Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser. Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 19,90
Python ::: Python para Engenharia ::: Engenharia Civil - Cálculo Estrutural

Como calcular a Posição da Linha Neutra em vigas de concreto armado usando Python - Python para Engenharia Civil - Cálculo Estrutural

Quantidade de visualizações: 510 vezes
O concreto possui excelente resistência à compressão, porém, sua resistência à tração é muito pequena, chegando em torno de 10% da sua resistência à compressão. O aço, por sua vez, apresenta alta resistência à tração.

Por esta razão a combinação destes dois materiais resulta no que conhecemos por concreto armado, no qual o concreto, no caso das vigas, resiste às solicitações de compressão (em geral na parte superior da viga) e o aço se encarrega da tração (na parte inferior da viga).

Entre as forças de compressão e tração da viga de concreto armado existe uma região na qual as tensões são nulas, ou seja, não há nem tração nem compressão. Essa região é conhecida como linha neutra da viga e é usada, entre outras coisas, para verificarmos se a viga se encontra nas condições mínimas de dutibilidade exigidas pela ABNT NBR 6118/2014.

Outra característica muito importante da linha neutra é que ela nos permite indicar em qual domínio de deformação as nossas vigas de concreto armado estão trabalhando.

A posição da linha neutra em vigas de concreto armado pode ser calculada por meio da seguinte fórmula:

\[x = 1,25 \cdot d \cdot \left(1 - \sqrt{1 - \frac{M_d}{0,425 \cdot b_w \cdot d^2 \cdot f_\text{cd}}}\right)\]

Onde:

x é a posição da linha neutra a partir da fibra mais comprimida da viga, em metros (que depois convertemos para cm);

d é a altura útil da viga em metros;

Md é o momento solicitante de cálculo na viga, em kN.m;

bw é a largura da viga, em metros;

fcd é a resistência de cálculo do concreto, em kN/m2;

Veja agora o código Python completo que pede para o usuário informar a altura e largura da viga em centímetros, o momento solicitante na viga em kN.m e o FCK do concreto em Mpa, mostra a posição da linha neutra da viga e informa se ela obedece ao valor máximo imposto pela ABNT NBR 6118/2014 e também o domínio de deformação que ela está atuando:

# precisamos importar o módulo Math
import math

# função principal do programa Python
def main():
  # vamos pedir para o usuário informar a altura da viga
  altura = float(input("Informe a altura H da viga em cm: "))
  # vamos converter de centímetros para metros
  altura = altura / 100.00

  # vamos pedir para o usuário informar a largura da viga
  largura = float(input("Informe a largura bw da viga em cm: "))
  # vamos converter de centímetros para metros
  largura = largura / 100.00

  # vamos calcular a altura útil da viga
  # aqui eu usei 0.9 mas alguns engenheiros usam 0.95
  altura_util = 0.9 * altura

  # vamos pedir para o usuário informar o momento
  # máximo solicitante Mk (calculado no Ftool ou outra ferramenta)
  Mk = float(input("Informe o momento solicitante Mk em kN.m: "))
  # vamos definir o valor do gama f
  yf = 1.4
  # calculamos o md, ou seja, o momento solicitante de cálculo
  Md = Mk * yf

  # vamos pedir para o usuário informar o FCK do concreto
  fck = float(input("Informe o FCK do concreto em Mpa: "))
  # vamos definir o valor do gama c
  yc = 1.4
  # calculamos o fcd, ou seja, a resistência de cálculo do concreto
  fcd = fck / yc

  # finalmente vamos calcular a posição da linha neutra
  # note que converti o fcd de Mpa para kN/m2
  x = 1.25 * altura_util * (1 - math.sqrt(1 - (Md / (0.425 *
    largura * math.pow(altura_util, 2) * (fcd * 1000.0)))))
  
  # vamos mostrar os resultados 
  print("\nA altura útil da viga é: {0} cm ({1} m)".format(
    round(altura_util * 100, 5), round(altura_util, 5)))
  print("O momento solicitante de cálculo é: {0} kN.m".format(
    round(Md, 5)))
  print("O fcd do concreto é: {0} Mpa".format(round(fcd, 5)))
  print("A posição da linha neutra é: {0} cm".format(round(x * 100.0, 5)))
  
  # vamos verificar se a posição da linha neutra está dentro do
  # limite máximo imposto pela ABNT NBR 6118/2014 para FCK até 50 Mpa
  if ((x / altura_util) <= 0.45):
    print("Garante condições mínimas de dutibilidade? SIM")
  else:
    print("Garante condições mínimas de dutibilidade? NÃO")

  # vamos verificar o domínio de deformação da vaga
  temp = x / altura_util
  if (temp <= 0.167):
    print("A viga está trabalhando no domínio 1")
  elif ((temp > 0.167) and (temp <= 0.259)):
    print("A viga está trabalhando no domínio 2")
  elif ((temp > 0.259) and (temp <= 0.628)):
    print("A viga está trabalhando no domínio 3")
  else:
    print("A viga está trabalhando no domínio 4/5")

if __name__ == "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Informe a altura H da viga em cm: 35
Informe a largura bw da viga em cm: 19
Informe o momento solicitante Mk em kN.m: 32.3
Informe o FCK do concreto em Mpa: 25

A altura útil da viga é: 31.5 cm (0.315 m)
O momento solicitante de cálculo é: 45.22 kN.m
O fcd do concreto é: 17.85714 Mpa
A posição da linha neutra é: 6.81136 cm
Garante condições mínimas de dutibilidade? SIM
A viga está trabalhando no domínio 2


Java ::: Java Swing - Gerenciadores de Layout ::: GridBagLayout

Como adicionar espaço entre o GridBagLayout do Java Swing e as bordas da janela JFrame usando o método setBorder()

Quantidade de visualizações: 11667 vezes
Se o GridBagLayout for o gerenciador de layout principal da janela, pode ser interessante adicionar algum espaço (padding) entre ele e as bordas da janela JFrame ou JDialog. Isso pode ser feito obtendo-se uma referência ao painel de conteúdo (ContentPane) da JFrame e adicionando uma borda EmptyBorder. Veja como isso é feito no trecho de código abaixo:

package arquivodecodigos;

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;

public class Estudos extends JFrame{
  public Estudos(){
    super("Como usar a classe GridBagLayout");

    // define o layout
    setLayout(new GridBagLayout());
    
    // define uma borda para aumentar o espaço
    // entre as bordas da janela e o gerenciador
    // de layout
    ((JComponent)getContentPane()).setBorder(
       new EmptyBorder(10, 10, 10, 10));

    // cria o GridBagConstraints
    GridBagConstraints gbc = new GridBagConstraints();

    // controla o espaço entre os componentes
    // e as linhas do GridBagLayout.
    // aqui nós definimos 5 pixels para os
    // lados de cima, esquerda, inferior e direita
    gbc.insets = new Insets(5, 5, 5, 5);

    // adiciona componentes à janela
    gbc.gridy = 0; // linha
    gbc.gridx = 0; // coluna
    add(new JButton("Botão 1"), gbc);

    gbc.gridy = 0; // linha
    gbc.gridx = 1; // coluna
    add(new JButton("Botão 2"), gbc);

    gbc.gridy = 0; // linha
    gbc.gridx = 2; // coluna
    add(new JButton("Botão 3"), gbc);

    gbc.gridy = 1; // linha
    gbc.gridx = 0; // coluna
    add(new JButton("Botão 4"), gbc);

    gbc.gridy = 1; // linha
    gbc.gridx = 1; // coluna
    add(new JButton("Botão 5"), gbc);

    gbc.gridy = 1; // linha
    gbc.gridx = 2; // coluna
    add(new JButton("Botão 6"), gbc);
    
    //setSize(350, 150);
    pack(); // ajusta o tamanho da janela ao
    // dos componentes
    setVisible(true);    
  }

  public static void main(String args[]){
    Estudos app = new Estudos();
    app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
  }
}

Ao executar este código Java Swing nós teremos o seguinte resultado:




Python ::: Dicas & Truques ::: Strings e Caracteres

Como verificar se uma string está toda em letras minúsculas usando a função islower() da classe string do Python

Quantidade de visualizações: 8513 vezes
Em algumas ocasiões nós precisamos verificar se uma palavra, frase ou texto contém apenas letras minúsculas. Para isso pode usar a função islower() da classe string do Python. Esta função True se a string contiver apenas letras minúsculas e False em caso contrário.

Note que, mesmo que a string contenha números ela ainda pode estar em letras minúsculas.

Veja o código completo:

# função principal do programa
def main():
  frase = "ainda gosto do python_2.6"
 
  if frase.islower():
    print("A string está em letras minúsculas")
  else:
    print("A string não está em letras minúsculas")
  
if __name__== "__main__":
  main()

Ao executar este código nós teremos o seguinte resultado:

A string está em letras minúsculas


Python ::: Pandas Python Library (Biblioteca Python Pandas) ::: DataFrame

Como usar o objeto DataFrame da biblioteca Pandas do Python

Quantidade de visualizações: 2093 vezes
A biblioteca Pandas do Python é uma das preferidas para o estudo e desenvolvimento de soluções envolvendo Big Data, Data Science, Data Mining, Machine Learning, Inteligência Artificial, etc. E o objeto DataFrame é uma das partes mais importantes dessa biblioteca.

Um objeto DataFrame é uma estrutura de dados bidimensional, ou seja, uma tabela contendo linhas e colunas. Nesse formato tabular, que pode ter seu tamanho redimensionado, as informações contidas no objeto DataFrame podem ser atualizadas de acordo com as necessidades do nosso código. Além disso, linhas e colunas podem ser adicionadas ou excluídas em tempo de execução.

A forma mais comum de criarmos um DataFrame é usando o seu construtor. Veja:

# importamos a biblioteca Pandas
import pandas as pd

def main():
  # conteúdo do DataFrame
  produtos = [['Notebook AB43', 43], ['Tela LED', 87],
    ['Bateria 16 Volts', 120]]

  # vamos construir o DataFrame
  df = pd.DataFrame(produtos, columns=['Produto', 'Estoque'])

  # vamos mostrar o conteúdo do DataFrame
  print(df)

if __name__== "__main__":
  main()

Ao executarmos este código nós teremos o seguinte resultado:

            Produto  Estoque
0     Notebook AB43       43
1          Tela LED       87
2  Bateria 16 Volts      120


Aqui nós usamos uma list contendo três lists, ou seja, uma matrix de três linhas e duas colunas. Veja como obter o mesmo resultado usando um dicionário:

# importamos a biblioteca Pandas
import pandas as pd

def main():
  # conteúdo do DataFrame
  produtos = {'Produto':['Notebook AB43', 'Tela LED', 
    'Bateria 16 Volts'], 'Estoque':[43, 87, 120]}

  # vamos construir o DataFrame
  df = pd.DataFrame(produtos)

  # vamos mostrar o conteúdo do DataFrame
  print(df)

if __name__== "__main__":
  main()

Execute este código e verá que o DataFrame resultante é o mesmo do código anterior.


Nossas 20 dicas & truques de programação mais populares

Você também poderá gostar das dicas e truques de programação abaixo

Nossas 20 dicas & truques de programação mais recentes

Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site

Últimos Exercícios Resolvidos

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser. Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 19,90


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 54 usuários muito felizes estudando em nosso site.