Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO

Java ::: Fundamentos da Linguagem ::: Tipos de Dados

Como usar o tipo de dados float do Java - Usando o tipo de dados float da linguagem Java

Quantidade de visualizações: 23018 vezes
O tipo de dados float é usado quando precisamos armazenar números de ponto-flutuante (com parte fracionária) na faixa 1.401298464324817e-45f até 3.402823476638528860e+38f. Este tipo ocupa 32 bits na memória (o mesmo que um int) e possui precisão de 6 ou 7 dígitos significativos. Veja um exemplo de seu uso:

public class Estudos{
  public static void main(String args[]){
    float valor = 54.5f;
     
    System.out.println("O valor da variável é: " +
      valor);
     
    System.exit(0);
  }
}

Antes de prosseguir, veja que inserí a letra "f" (ou "F") após o valor literal atribuído à variável. Se retirássemos esta letra, o compilador emitiria a seguinte mensagem de erro:

Estudos.java:3: possible loss of precision
found   : double
required: float
  float valor = 54.5;
                ^
1 error


Isso acontece porque, por padrão, um literal de ponto-flutuante é no mínimo do tipo double. E um double não cabe em um float. A definição da letra "f" ou "F" informa ao compilador que estamos realmente definindo um literal float.

O tipo de dados float pode ser convertido (sem a necessidade de cast) para os seguintes tipos:

float -> double

Se precisarmos converter o tipo float para os tipos char, byte, short, int ou long, teremos que lançar mão de uma coerção (cast), também conhecida como conversão forçada. Veja:

float valor = 54.5f;
int valor2 = (int)(valor);

É preciso ficar atento ao fato de que uma coerção de um tipo de ponto-flutuante para um tipo integral (inteiro) resulta na perda da parte fracionária do valor que está sofrendo o cast.


LISP ::: LISP para Engenharia ::: Geometria Analítica e Álgebra Linear

Como converter Coordenadas Cartesianas para Coordenadas Polares em LISP - LISP para Engenharia

Quantidade de visualizações: 1063 vezes
Nesta nossa série de LISP e AutoLISP para Geometria Analítica e Álgebra Linear, mostrarei um código 100% funcional para fazer a conversão entre coordenadas cartesianas e coordenadas polares. Esta operação é muito frequente em computação gráfica e é parte integrante das disciplinas dos cursos de Engenharia (com maior ênfase na Engenharia Civil).

Na matemática, principalmente em Geometria e Trigonometria, o sistema de Coordenadas no Plano Cartesiano, ou Espaço Cartesiano, é um sistema que define cada ponto em um plano associando-o, unicamente, a um conjuntos de pontos numéricos.

Dessa forma, no plano cartesiano, um ponto é representado pelas coordenadas (x, y), com o x indicando o eixo horizontal (eixo das abscissas) e o y indicando o eixo vertical (eixo das ordenadas). Quando saímos do plano (espaço 2D ou R2) para o espaço (espaço 3D ou R3), temos a inclusão do eixo z (que indica profundidade).

Já o sistema de Coordenadas Polares é um sistema de coordenadas em duas dimensões no qual cada ponto no plano é determinado por sua distância a partir de um ponto de referência conhecido como raio (r) e um ângulo a partir de uma direção de referência. Este ângulo é normalmente chamado de theta (__$\theta__$). Assim, um ponto em Coordenadas Polares é conhecido por sua posição (r, __$\theta__$).

Antes de prosseguirmos, veja uma imagem demonstrando os dois sistemas de coordenadas:



A fórmula para conversão de Coordenadas Cartesianas para Coordenadas Polares é:

__$r = \sqrt{x^2+y2}__$
__$\theta = \\arctan\left(\frac{y}{x}\right)__$

E aqui está o código LISP completo que recebe as coordenadas cartesianas (x, y) e retorna as coordenadas polares (r, __$\theta__$):

; programa LISP que converte Coordenadas Cartesianas
; em Coordenadas Polares
(let((x)(y)(raio)(theta)(angulo_graus))
  ; vamos ler as coordenadas cartesianas
  (princ "Valor de x: ")
  (force-output)
  (setq x (read))
  (princ "Valor de y: ")
  (force-output)
  (setq y (read))
  
  ; vamos calcular o raio
  (setq raio (sqrt (+ (expt x 2) (expt y 2))))
  
  ; agora calculamos o theta (ângulo) em radianos 
  (setq theta (atan y x))

  ; queremos o ângulo em graus também
  (setq angulo_graus (* 180 (/ theta pi)))
  
  ; e exibimos o resultado
  (princ "As Coordenadas Polares são: ")
  (format t "raio = ~F, theta = ~F, ângulo em graus: ~F"
    raio theta angulo_graus)
)

Ao executar este código LISP nós teremos o seguinte resultado:

Valor de x: -1
Valor de y: 1
As Coordenadas Polares são:
raio = 1.4142135623730951, theta = 2.356194490192345, ângulo em graus = 135.0

Veja que as coordenadas polares equivalentes são (__$\sqrt{2}__$, __$\frac{3\pi}{4}__$), com o theta em radianos. Sim, os professores das disciplinas de Geometria Analítica e Álgebra Linear, Física e outras gostam de escrever os resultados usando raizes e frações em vez de valores reais.


VB.NET ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular o coeficiente angular de uma reta em VB.NET dados dois pontos no plano cartesiano

Quantidade de visualizações: 1365 vezes
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x.

Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano:



Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é:

\[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \]

Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente.

Veja agora o trecho de código na linguagem VB.NET que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos:

Imports System

Module Program
  Sub Main(args As String())
    ' x e y do primeiro ponto
    Console.Write("Informe a coordenada x do primeiro ponto: ")
    Dim x1 As Double = Double.Parse(Console.ReadLine())
    Console.Write("Informe a coordenada y do primeiro ponto: ")
    Dim y1 As Double = Double.Parse(Console.ReadLine())

    ' x e y do segundo ponto
    Console.Write("Informe a coordenada x do segundo ponto: ")
    Dim x2 As Double = Double.Parse(Console.ReadLine())
    Console.Write("Informe a coordenada y do segundo ponto: ")
    Dim y2 As Double = Double.Parse(Console.ReadLine())

    ' agora vamos calcular o coeficiente angular
    Dim m As Double = (y2 - y1) / (x2 - x1)

    ' e mostramos o resultado
    Console.WriteLine("O coeficiente angular é: " & m)

    Console.WriteLine("\nPressione qualquer tecla para sair...")
    ' pausa o programa
    Console.ReadKey()
  End Sub
End Module

Ao executar este código em linguagem VB.NET nós teremos o seguinte resultado:

O coeficiente angular é: 0,6666666666666666

Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$):

Imports System

Module Program
  Sub Main(args As String())
    ' x e y do primeiro ponto
    Console.Write("Informe a coordenada x do primeiro ponto: ")
    Dim x1 As Double = Double.Parse(Console.ReadLine())
    Console.Write("Informe a coordenada y do primeiro ponto: ")
    Dim y1 As Double = Double.Parse(Console.ReadLine())

    ' x e y do segundo ponto
    Console.Write("Informe a coordenada x do segundo ponto: ")
    Dim x2 As Double = Double.Parse(Console.ReadLine())
    Console.Write("Informe a coordenada y do segundo ponto: ")
    Dim y2 As Double = Double.Parse(Console.ReadLine())

    ' vamos obter o comprimento do cateto oposto
    Dim cateto_oposto As Double = y2 - y1
    ' e agora o cateto adjascente
    Dim cateto_adjascente As Double = x2 - x1
    ' vamos obter o ângulo tetha, ou seja, a inclinação da hipetunesa
    ' (em radianos, não se esqueça)
    Dim tetha As Double = Math.Atan2(cateto_oposto, cateto_adjascente)
    ' e finalmente usamos a tangente desse ângulo para calcular
    ' o coeficiente angular
    Dim tangente As Double = Math.Tan(tetha)

    ' e mostramos o resultado
    Console.WriteLine("O coeficiente angular é: " & tangente)

    Console.WriteLine("\nPressione qualquer tecla para sair...")
    ' pausa o programa
    Console.ReadKey()
  End Sub
End Module

Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta:

1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0;

2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0;

3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0).

4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe.


Java ::: Desafios e Lista de Exercícios Resolvidos ::: Java Básico

Exercícios Resolvidos de Java - Escrever um algoritmo que lê o público total de um jogo de futebol e fornece a renda do jogo

Quantidade de visualizações: 7741 vezes
Pergunta/Tarefa:

Em um determinado jogo de futebol havia 4 tipos de ingressos, assim distribuídos: popular 10%
a R$ 1,00; geral 50% a R$ 5,00; arquibancada 30% a R$ 10,00 e cadeiras 10% a R$ 20,00. Escreva um programa (algoritmo) Java que leia o público total do jogo e forneça a renda obtida.

Um outro enunciado muito comum deste exercício é: Escrever um algoritmo que lê o público total de futebol e fornecer a renda do jogo, sabendo-se que havia 4 tipos de ingressos assim distribuídos: popular 10% a R$ 1,00, geral 50% a R$ 5,00, arquibancada 30% a R$10,00 e cadeiras 10% a R$ 20,00.

Sua saída deverá ser parecida com:

Informe o público total do jogo de futebol: 10000
Renda geral do jogo: R$ 76.000,00
Resposta/Solução:

Veja a resolução comentada deste exercício usando Java:

package estudos;

import java.text.NumberFormat;
import java.util.Scanner;

public class Estudos {
  public static void main(String[] args) {
    // vamos fazer a leitura usando a classe Scanner
    Scanner entrada = new Scanner(System.in);
    
    // vamos obter o público total do jogo de futebol
    System.out.print("Informe o público total do jogo de futebol: ");
    int publico = Integer.parseInt(entrada.nextLine());
    
    // renda do ingresso popular
    double popular = (publico * (10.0 / 100)) * 1.00;
    // renda do ingresso geral
    double geral = (publico * (50.0 / 100)) * 5.00;
    // renda do ingresso arquibancada
    double arquibancada = (publico * (30.0 / 100)) * 10.00;
    // renda do ingresso cadeiras
    double cadeiras = (publico * (10.0 / 100)) * 20.00;
    
    // obtemos a renda total
    double renda_total = popular + geral + arquibancada + cadeiras;
    
    // e exibimos o resultado
    NumberFormat formato = NumberFormat.getCurrencyInstance();
    System.out.println("Renda geral do jogo: " + formato.format(renda_total));
  }
}



Nossas 20 dicas & truques de programação mais populares

Você também poderá gostar das dicas e truques de programação abaixo

Nossas 20 dicas & truques de programação mais recentes

Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site

Últimos Exercícios Resolvidos

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser. Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 19,90


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 49 usuários muito felizes estudando em nosso site.