Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO

Você está aqui: Cards de Engenharia Civil - Estruturas de Aço e Madeira
Card 0 de 0
O filtro aplicado não retornou nenhum resultado. Clique o botão Remover Filtro ou experimente um filtro diferente.

Filtrar Cards
Use esta opção para filtrar os cards pelos tópicos que mais lhe interessam.
Termos:
Aviso Importante: Nos esforçamos muito para que o conteúdo dos cards e dos testes e conhecimento seja o mais correto possível. No entanto, entendemos que erros podem ocorrer. Caso isso aconteça, pedimos desculpas e estamos à disposição para as devidas correções. Além disso, o conteúdo aqui apresentado é fruto de conhecimento nosso e de pesquisas na internet e livros. Caso você encontre algum conteúdo que não deveria estar aqui, por favor, nos comunique pelos e-mails exibidos nas opções de contato.
Link para compartilhar na Internet ou com seus amigos:

C++ ::: Fundamentos da Linguagem ::: Tipos de Dados

Como usar o tipo de dados long ou long int da linguagem C++

Quantidade de visualizações: 22797 vezes
O tipo de dados long (também chamado de long int) da linguagem C++ é uma variação do tipo int e geralmente possui a mesma capacidade de armazenamento deste. Nós o usamos quando queremos representar números inteiros, ou seja, sem partes fracionárias, assim como int. É importante verificar se o seu compilador trata int e long da mesma forma. Veja um trecho de código demonstrando o uso deste tipo (note que estes estudos foram feitos no Windows XP - 32 bits - usando Dev-C++):

#include <iostream>

using namespace std;

int main(int argc, char *argv[]){
  // declara uma variável do tipo long
  long quant = 590;

  cout << "Quantidade: " << quant << "\n\n";

  system("PAUSE"); // pausa o programa
  return EXIT_SUCCESS;
}

Veja que a maioria dos compiladores C++ não faz distinção entre os tipos long e long int. A capacidade de armazenamento do tipo long depende da arquitetura na qual o programa está sendo executado. Uma forma muito comum de descobrir esta capacidade é usar os símbolos LONG_MIN e LONG_MAX, definidos no header climits (limits.h). Veja:

#include <iostream>

using namespace std;

int main(int argc, char *argv[]){
  cout << "Valor mínimo: " << LONG_MIN << "\n";
  cout << "Valor máximo: " << LONG_MAX << "\n\n";

  system("PAUSE"); // pausa o programa
  return EXIT_SUCCESS;
}

Ao executar este programa você terá um resultado parecido com:

Valor mínimo: -2147483648
Valor máximo: 2147483647

Veja que o tipo long aceita valores positivos e negativos. Tudo que você tem a fazer é tomar todo o cuidado para que os valores atribuidos a variáveis deste tipo não ultrapassem a faixa permitida. Veja um trecho de código que provoca o que chamamos de transbordamento (overflow):

#include <iostream>

using namespace std;

int main(int argc, char *argv[]){
  long soma = LONG_MAX + 2;

  cout << "Resultado: " << soma << "\n";

  system("PAUSE"); // pausa o programa
  return EXIT_SUCCESS;
}

Este programa exibirá o seguinte resultado:

Resultado: -2147483647

Note que este não é o resultado esperado, visto que LONG_MAX + 2 deveria retornar:

2147483647 + 2 = 2147483649

Porém, como o valor máximo que pode ser armazenado em um long é 2147483647, o procedimento adotado pelo compilador foi tornar o número negativo e subtrair 1. É claro que, se você testar este código em arquiteturas diferentes o resultado poderá ser diferente do exemplificado aqui.

Em termos de bytes, é comum o tipo long ser armazenado em 4 bytes, o que resulta em 32 bits (um byte é formado por 8 bits, lembra?). Veja um trecho de código que mostra como usar o operador sizeof() para determinar a quantidade de bytes necessários para armazenar um variável do tipo long:

#include <iostream>

using namespace std;

int main(int argc, char *argv[]){
  cout << "Tamanho de um long: " << sizeof(long)
    << " bytes\n\n";

  system("PAUSE"); // pausa o programa
  return EXIT_SUCCESS;
}

O resultado da execução deste código será algo como:

Tamanho de um long: 4 bytes



C ::: Dicas & Truques ::: Arrays e Matrix (Vetores e Matrizes)

Como testar se uma matriz é uma matriz identidade usando C

Quantidade de visualizações: 2093 vezes
Seja M uma matriz quadrada de ordem n. A matriz M é chamada de Matriz Identidade de ordem n (indicada por In) quando os elementos da diagonal principal são todos iguais a 1 e os elementos restantes são iguais a zero.

Para melhor entendimento, veja a imagem de uma matriz identidade de ordem 3, ou seja, três linhas e três colunas:



Veja um código C completo no qual nós declaramos uma matriz quadrada de ordem 3, pedimos para o usuário informar os valores de seus elementos e no final informamos se a matriz é uma matriz identidade ou não:

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>

int main(int argc, char *argv[]){
  setlocale(LC_ALL,""); // para acentos do português

  int n = 3; // ordem da matriz quadrada
  int matriz[n][n]; // matriz quadrada
  int i, j, linha, coluna;
  int identidade = 1;

  // vamos pedir para o usuário informar os elementos da matriz
  for (i = 0; i < n; i++){
    for (j = 0; j < n; j++) {
      printf("Elemento na linha %d e coluna %d: ", (i + 1), (j + 1));
      scanf("%d", &matriz[i][j]);
    }
  }
    
  // agora verificamos se a matriz é uma matriz identidade
  for(linha = 0; linha < n; linha++){
    for(coluna = 0; coluna < n; coluna++){
      if(matriz[linha][coluna] != 1 && matriz[coluna][linha] != 0){
    	identidade = 0;
    	break;
      }
    }
  }
    
  // agora mostramos a matriz lida
  printf("\n");
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      printf("%d ", matriz[i][j]);
    }
    printf("\n");
  }

  if (identidade){
    printf("\nA matriz informada é uma matriz identidade.");
  }
  else{
    printf("\nA matriz informada não é uma matriz identidade.");
  }
  
  printf("\n\n");
  system("PAUSE");	
  return 0;
}

Ao executar este código C nós teremos o seguinte resultado:

Elemento na linha 1 e coluna 1: 1
Elemento na linha 1 e coluna 2: 0
Elemento na linha 1 e coluna 3: 0
Elemento na linha 2 e coluna 1: 0
Elemento na linha 2 e coluna 2: 1
Elemento na linha 2 e coluna 3: 0
Elemento na linha 3 e coluna 1: 0
Elemento na linha 3 e coluna 2: 0
Elemento na linha 3 e coluna 3: 1

1 0 0 
0 1 0 
0 0 1 

A matriz informada é uma matriz identidade.



C# ::: Dicas & Truques ::: Data e Hora

Como obter a quantidade de dias em um determinado mês usando o método GetDaysInMonth() da classe GregorianCalendar do C#

Quantidade de visualizações: 12472 vezes
Em algumas situações precisamos saber quantos dias há em um determinado mês. Para isso podemos usar o método GetDaysInMonth() da classe Calendar (ou alguma de suas subclasses). Este método recebe dois valores inteiros: o ano e o mês desejado.

Na classe GregorianCalendar (que extende Calendar) o método GetDaysInMonth() retorna 28 para os anos comuns e 29 para os anos bissextos.

Veja um trecho de código no qual usamos o método GetDaysInMonth() para obter a quantidade de dias para o mês de Março de 2009:

static void Main(string[] args){
  // using System.Globalization;

  // obtém uma instância da classe GregorianCalendar
  Calendar c = new GregorianCalendar();

  // obtém a quantidade de dias para março de 2009
  int dias = c.GetDaysInMonth(2009, 3);

  // exibe o resultado
  Console.WriteLine("Este mês possui {0} dias", dias);

  // pausa o programa
  Console.ReadKey();
}

Note, contudo, que o mesmo resultado pode ser obtido por meio do calendário padrão independente de cultura, desde que as regiões as quais o programa se destina tenham compatibilidade de calendários:

Calendar c = CultureInfo.InvariantCulture.Calendar;

O método GetDaysInMonth() pode atirar uma exceção do tipo ArgumentOutOfRangeException se os valores do ano ou mês estiverem fora das faixas permitidas pelo calendário. Veja:

System.ArgumentOutOfRangeException was unhandled
  Message="Month must be between one and twelve.
   Parameter name: month"
  Source="mscorlib"
  ParamName="month"



Ruby ::: Fundamentos da Linguagem ::: Passos Iniciais

Como ler a entrada do usuário em Ruby usando a função gets

Quantidade de visualizações: 12380 vezes
Em várias ocasições nossos programas Ruby precisam interagir com o usuário, ou seja, precisamos ler informações do usuário com o propósito de efetuar algum cálculo ou tomar decisões sobre as tarefas a serem realizadas.

A entrada do usuário em um programa Ruby pode ser obtida por meio do método gets. Esta função recebe a entrada do usuário a partir do teclado em formato texto (string) e a armazena em uma variável do tipo string.

Veja um exemplo no qual usamos a função gets para solicitar que o usuário informe o seu nome. Em seguida imprimimos o nome informado na tela:

# Este exemplo mostra como ler entrada do usuário
# a partir do teclado

print "Informe seu nome: "

# Lê a entrada
nome = gets

# Remove o caractere de fim de linha
nome = nome.chomp

# Exibe o resultado
puts "Seu nome é: #{nome}"

Ao executar este código Ruby nós teremos o seguinte resultado:

Informe seu nome: Osmar J. Silva
Seu nome é: Osmar J. Silva

Note o uso da função chomp para remover o caractere de fim de linha adicionando automaticamente pelo interpretador Ruby quando pressionamos a tecla Enter.


C ::: C para Engenharia ::: Física - Mecânica

Como calcular a massa de um corpo dada sua energia cinética e sua velocidade usando a linguagem C

Quantidade de visualizações: 2760 vezes
Na Física, a energia cinética em um objeto é a energia que ele possui devido ao seu movimento. Isso é definido como o trabalho necessário para acelerar um corpo de massa em repouso para que este adquira velocidade. Tendo ganho essa energia durante a aceleração, o corpo mantém essa energia cinética a menos que a sua velocidade mude. A mesma quantidade de trabalho é produzida por um corpo desacelerando da sua velocidade atual para um estado de repouso.

Os carros de uma montanha-russa atingem sua energia cinética máxima quando estão no fundo de sua trajetória. Quando eles começam a subir, a energia cinética começa a ser convertida em energia potencial gravitacional, mas, se forem assumidos atritos insignificantes e outros fatores de atraso, a quantidade total de energia no sistema permanece constante.

A fórmula para obtenção da massa de um corpo, quando temos a sua energia cinética e a sua velocidade é:

\[ \text{m} = \frac{\text{2} \cdot E_c}{v^2} \]

Onde:

m ? massa do corpo (em kg).

Ec ? energia cinética (em joule, J).

v ? velocidade do corpo (em m/s).

Vamos ver um exemplo agora? Observe o seguinte enunciado:

1) Uma bola de golfe está viajando a uma velocidade de 50m/s, e possui energia cinética de 75J. Qual é a sua massa?

Note que o exercício nos dá a velocidade já em m/s, evitando a necessidade da conversão de km/h para m/s. Temos também a energia cinética já em sua medida apropriada. Assim, só precisamos jogar na fórmula. Veja o código C completo para este cálculo:

#include <stdio.h>
#include <stdlib.h>
#include <math.h> 
     
int main(int argc, char *argv[]){
  // velocidade (em m/s)
  float velocidade = 50; // em m/s
  // energia cinética
  float energia_cinetica = 75; // em joule
  
  // e então calculamos a massa do corpo
  float massa = (2 * energia_cinetica) / pow(velocidade, 2);
  
  // mostramos o resultado
  printf("A massa do corpo é: %fkg", massa);
			  
  printf("\n\n");
  system("PAUSE");
  return 0;
}

Ao executar este código C nós teremos o seguinte resultado:

A massa do corpo é: 0.060000kg (ou 0.060000 x 1000 = 60 gramas).


Desafios, Exercícios e Algoritmos Resolvidos de C

Veja mais Dicas e truques de C

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser. Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 19,90


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 105 usuários muito felizes estudando em nosso site.