Você está aqui: Teste de Conhecimento em Topografia
Questão 1 de 6
Acertos: 0
Erros: 0
Aproveitamento: 0,00%
Bem-vindo(a) ao Teste de Conhecimento em Topografia.
Nossos testes não possuem limite de tempo, ou seja, você pode passar horas ou dias treinando para provas, concursos e entrevistas.
Aviso Importante: Nos esforçamos muito para que o conteúdo dos cards e dos testes e conhecimento seja o mais correto possível. No entanto, entendemos que erros podem ocorrer. Caso isso aconteça, pedimos desculpas e estamos à disposição para as devidas correções. Além disso, o conteúdo aqui apresentado é fruto de conhecimento nosso e de pesquisas na internet e livros. Caso você encontre algum conteúdo que não deveria estar aqui, por favor, nos comunique pelos e-mails exibidos nas opções de contato.
Link para compartilhar na Internet ou com seus amigos:

TypeScript ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular o coeficiente angular de uma reta em TypeScript dados dois pontos no plano cartesiano

Quantidade de visualizações: 1463 vezes
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x.

Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano:



Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é:

\[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \]

Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente.

Veja agora o trecho de código na linguagem TypeScript que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos:

// x e y do primeiro ponto
var x1:number = 3;
var y1:number = 6;
  
// x e y do segundo ponto
var x2:number = 9;
var y2:number = 10;   
   
var m:number = (y2 - y1) / (x2 - x1);
   
// mostramos o resultado
console.log("O coeficiente angular é: " + m);

Ao executar este código TypeScript nós teremos o seguinte resultado:

O coeficiente angular é: 0.6666666666666666

Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$):

// x e y do primeiro ponto
var x1:number = 3;
var y1:number = 6;
  
// x e y do segundo ponto
var x2:number = 9;
var y2:number = 10;   
   
// vamos obter o comprimento do cateto oposto
var cateto_oposto:number = y2 - y1;
// e agora o cateto adjascente
var cateto_adjascente:number = x2 - x1;
// vamos obter o ângulo tetha, ou seja, a inclinação da hipotenusa
// (em radianos, não se esqueça)
var tetha:number = Math.atan2(cateto_oposto, cateto_adjascente);
// e finalmente usamos a tangente desse ângulo para calcular
// o coeficiente angular
var tangente:number = Math.tan(tetha);
   
// mostramos o resultado
console.log("O coeficiente angular é: " + tangente);

Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta:

1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0;

2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0;

3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0).

4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe.


Python ::: Fundamentos da Linguagem ::: Estruturas de Controle

Python para iniciantes - Como usar a instrução break em Python

Quantidade de visualizações: 10615 vezes
A instrução break da linguagem Python é usada para interromper a execução de um laço for ou while. Observe que se o laço possuir um bloco else, este não será executado se a instrução break for usada.

Veja um exemplo de um laço for que é interrompido se o valor da variável de controle for 5:

# função principal do programa
def main():
  for i in range(0, 21):
    print(i)
    if i == 5:
      break
  
if __name__== "__main__":
  main()

Ao executarmos este código nós teremos o seguinte resultado:

0
1
2
3
4
5


C ::: C para Engenharia ::: Geometria Analítica e Álgebra Linear

Como calcular a norma ou módulo de vetores nos espaços R2 e R3 usando C - Geometria Analítica e Álgebra Linear usando C

Quantidade de visualizações: 4339 vezes
Em Geometria Analítica e Álgebra Linear, a magnitude, norma, comprimento, tamanho ou módulo (também chamado de intensidade na Física) de um vetor é o seu comprimento, que pode ser calculado por meio da distância de seu ponto final a partir da origem, no nosso caso (0,0).

Considere o seguinte vetor no plano, ou seja, no espaço bidimensional, ou R2:

\[\vec{v} = \left(7, 6\right)\]

Aqui este vetor se inicia na origem (0, 0) e vai até as coordenadas (x = 7) e (y = 6). Veja sua plotagem no plano 2D:



Note que na imagem já temos todas as informações que precisamos, ou seja, o tamanho desse vetor é 9 (arredondado) e ele faz um ângulo de 41º (graus) com o eixo x positivo. Em linguagem mais adequada da trigonometria, podemos dizer que a medida do cateto oposto é 6, a medida do cateto adjacente é 7 e a medida da hipotenusa (que já calculei para você) é 9.

Note que já mostrei também o ângulo theta (__$\theta__$) entre a hipotenusa e o cateto adjacente, o que nos dá a inclinação da reta representada pelos pontos (0, 0) e (7, 6).

Relembrando nossas aulas de trigonometria nos tempos do colegial, temos que o quadrado da hipotenusa é a soma dos quadrados dos catetos, ou seja, o Teorema de Pitágoras:

\[a^2 = b^2 + c^2\]

Como sabemos que a potenciação é o inverso da radiciação, podemos escrever essa fórmula da seguinte maneira:

\[a = \sqrt{b^2 + c^2}\]

Passando para os valores x e y que já temos:

\[a = \sqrt{7^2 + 6^2}\]

Podemos comprovar que o resultado é 9,21 (que arredondei para 9). Não se esqueça da notação de módulo ao apresentar o resultado final:

\[\left|\vec{v}\right| = \sqrt{7^2 + 6^2}\]

E aqui está o código C que nos permite informar os valores x e y do vetor e obter o seu comprimento, tamanho ou módulo:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
  
int main(int argc, char *argv[]){
  float x, y, norma;
  // vamos ler os valores x e y
  printf("Informe o valor de x: ");
  scanf("%f", &x);
  printf("Informe o valor de y: ");
  scanf("%f", &y);
  
  // vamos calcular a norma do vetor
  norma = sqrt(pow(x, 2) + pow(y, 2));
    
  // mostra o resultado
  printf("A norma do vetor é: %f", norma);
 
  printf("\n\n");
  system("PAUSE");
  return 0;
}

Ao executar este código C nós teremos o seguinte resultado:

Informe o valor de x: 7
Informe o valor de y: 6
A norma do vetor é: 9.219544457292887

Novamente note que arredondei o comprimento do vetor para melhor visualização no gráfico. Para calcular a norma de um vetor no espaço, ou seja, no R3, basta acrescentar o componente z no cálculo.


Java ::: Desafios e Lista de Exercícios Resolvidos ::: Métodos, Procedimentos e Funções

Exercício Resolvido de Java - Como converter minutos em segundos em Java usando uma função

Quantidade de visualizações: 876 vezes
Pergunta/Tarefa:

Escreva um programa Java para converter minutos em segundos. Você deverá criar uma função converter() que receberá, como argumento, um número inteiro representando os minutos e retornará, também como um inteiro, os segundos correspondentes. Os minutos deverão ser informados pelo usuário.

Sua saída deverá ser parecida com:

Informe os minutos: 15
A quantidade de segundos é: 900
Resposta/Solução:

Veja a resolução comentada deste exercício em Java:

package estudos;

import java.util.Scanner;

public class Estudos {
  public static void main(String[] args) {
    // para ler a entrada do usuário
    Scanner entrada = new Scanner(System.in);
    
    // vamos pedir para o usuário informar os minutos
    System.out.print("Informe os minutos: ");
    int minutos = Integer.parseInt(entrada.nextLine());
  
    // agora vamos chamar a função converter() para converter
    // os minutos em segundos
    int segundos = converter(minutos);
  
    // e mostramos o resultado
    System.out.println("A quantidade de segundos é: " + segundos);
  }
  
  // função usada para converter minutos em segundos
  public static int converter(int minutos){
    int segundos = minutos * 60;
    return segundos; 
  }
}



Delphi ::: Dicas & Truques ::: Arquivos e Diretórios

Como escrever em um arquivo texto usando as funções Write() e WriteLn() do Delphi

Quantidade de visualizações: 28663 vezes
Não há como fugir. Cedo ou tarde precisaremos escrever em um arquivo texto usando Delphi. E esta dica foi escrita com o propósito de facilitar esta tarefa.

O primeiro passo para se escrever em um arquivo texto usando Delphi é declarar uma variável do tipo TextFile. Em seguida usamos a procedure AssignFile() para associar a variável TextFile ao arquivo em disco.

Como queremos escrever conteúdo novo no arquivo, a função Rewrite() pode ser usada. Esta função cria o arquivo em disco se este ainda não existir. Se o mesmo existir, ele é excluído e a função cria outro com o mesmo nome. E, para escrever conteúdo no arquivo texto, usamos as funções Write() e WriteLn(). A primeira escreve no arquivo enquanto a segunda escreve no arquivo e adiciona o marcador de quebra de linha.

Veja o exemplo para um melhor entendimento:

procedure TForm1.Button1Click(Sender: TObject);
var
  arquivo: TextFile;
begin
  // vamos fazer uma ligação entre a variável arquivo e o
  // arquivo que queremos manipular
  AssignFile(arquivo, 'C:\arquivo de codigos\dados.txt');

  // vamos abrir o arquivo ou criar um novo
  Rewrite(arquivo);

  // vamos escrever no arquivo agora
  WriteLn(arquivo, 'Sou a primeira linha.');
  Write(arquivo, 'Sou a segunda linha.');
  WriteLn(arquivo, ' E lá vem...');
  WriteLn(arquivo, 'A terceira linha');

  // hora de fechar o arquivo
  CloseFile(arquivo);

  // fim
  ShowMessage('Operação realizada com sucesso.');
end;


Para fins de compatibilidade, esta dica foi escrita usando Delphi 2009.


Desafios, Exercícios e Algoritmos Resolvidos de Delphi

Veja mais Dicas e truques de Delphi

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 33 usuários muito felizes estudando em nosso site.