Você está aqui: Cards de Engenharia Civil - Construção Civil |
||
|
||
|
|
||
Java ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas |
Como calcular o coeficiente angular de uma reta em Java dados dois pontos no plano cartesianoQuantidade de visualizações: 2006 vezes |
|
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x. Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano: ![]() Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é: \[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \] Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente. Veja agora o trecho de código na linguagem Java que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos:
package arquivodecodigos;
import java.util.Scanner;
public class Estudos{
public static void main(String args[]){
// para ler a entrada do usuário
Scanner entrada = new Scanner(System.in);
// coordenadas dos dois pontos
double x1, y1, x2, y2;
// guarda o coeficiente angular
double m;
// x e y do primeiro ponto
System.out.print("Coordenada x do primeiro ponto: ");
x1 = Double.parseDouble(entrada.nextLine());
System.out.print("Coordenada y do primeiro ponto: ");
y1 = Double.parseDouble(entrada.nextLine());
// x e y do segundo ponto
System.out.print("Coordenada x do segundo ponto: ");
x2 = Double.parseDouble(entrada.nextLine());
System.out.print("Coordenada y do segundo ponto: ");
y2 = Double.parseDouble(entrada.nextLine());
// vamos calcular o coeficiente angular
m = (y2 - y1) / (x2 - x1);
// mostramos o resultado
System.out.println("O coeficiente angular é: " + m);
System.out.println("\n\n");
System.exit(0);
}
}
Ao executar este código Java nós teremos o seguinte resultado: Coordenada x do primeiro ponto: 3 Coordenada y do primeiro ponto: 6 Coordenada x do segundo ponto: 9 Coordenada y do segundo ponto: 10 O coeficiente angular é: 0.6666666666666666 Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$):
package arquivodecodigos;
import java.util.Scanner;
public class Estudos{
public static void main(String args[]){
// para ler a entrada do usuário
Scanner entrada = new Scanner(System.in);
// coordenadas dos dois pontos
double x1, y1, x2, y2;
// guarda os comprimentos dos catetos oposto e adjascente
double cateto_oposto, cateto_adjascente;
// guarda o ângulo tetha (em radianos) e a tangente
double tetha, tangente;
// x e y do primeiro ponto
System.out.print("Coordenada x do primeiro ponto: ");
x1 = Double.parseDouble(entrada.nextLine());
System.out.print("Coordenada y do primeiro ponto: ");
y1 = Double.parseDouble(entrada.nextLine());
// x e y do segundo ponto
System.out.print("Coordenada x do segundo ponto: ");
x2 = Double.parseDouble(entrada.nextLine());
System.out.print("Coordenada y do segundo ponto: ");
y2 = Double.parseDouble(entrada.nextLine());
// vamos obter o comprimento do cateto oposto
cateto_oposto = y2 - y1;
// e agora o cateto adjascente
cateto_adjascente = x2 - x1;
// vamos obter o ângulo tetha, ou seja, a inclinação da hipetunesa
// (em radianos, não se esqueça)
tetha = Math.atan2(cateto_oposto, cateto_adjascente);
// e finalmente usamos a tangente desse ângulo para calcular
// o coeficiente angular
tangente = Math.tan(tetha);
// mostramos o resultado
System.out.println("O coeficiente angular é: " + tangente);
System.out.println("\n\n");
System.exit(0);
}
}
Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta: 1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0; 2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0; 3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0). 4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe. |
Python ::: Dicas & Truques ::: Strings e Caracteres |
Como testar se o primeiro caractere de cada palavra em uma string Python é o único em letra maiúscula usando a função istitle()Quantidade de visualizações: 9004 vezes |
|
Nesta dica mostrarei como podemos usar a função istitle() da linguagem Python para verificar se o primeiro caractere de cada palavra em uma frase ou texto é o único caractere em letra maiúscula. Se o teste for verdadeiro o retorno é true, caso contrário o retorno é false. Veja o exemplo completo:
def main():
frase = "Gosto De Programar Em Python"
if frase.istitle():
print("O primeiro caractere de cada palavra é maiusculo")
else:
print("O teste não resultou verdadeiro")
if __name__== "__main__":
main()
Ao executar este código Python nós teremos o seguinte resultado: O primeiro caractere de cada palavra é maiusculo. |
LISP ::: LISP para Engenharia ::: Geometria Analítica e Álgebra Linear |
Como converter Coordenadas Polares para Coordenadas Cartesianas em LISP - LISP para EngenhariaQuantidade de visualizações: 909 vezes |
|
Nesta nossa série de LISP e AutoLISP para Geometria Analítica e Álgebra Linear, mostrarei um código 100% funcional para fazer a conversão entre coordenadas polares e coordenadas cartesianas. Esta operação é muito frequente em computação gráfica e é parte integrante das disciplinas dos cursos de Engenharia (com maior ênfase na Engenharia Civil). Na matemática, principalmente em Geometria e Trigonometria, o Sistema de Coordenadas Polares é um sistema de coordenadas em duas dimensões no qual cada ponto no plano é determinado por sua distância a partir de um ponto de referência conhecido como raio (r) e um ângulo a partir de uma direção de referência. Este ângulo é normalmente chamado de theta (__$\theta__$). Assim, um ponto em Coordenadas Polares é conhecido por sua posição (r, __$\theta__$). Já o sistema de Coordenadas no Plano Cartesiano, ou Espaço Cartesiano, é um sistema que define cada ponto em um plano associando-o, unicamente, a um conjuntos de pontos numéricos. Dessa forma, no plano cartesiano, um ponto é representado pelas coordenadas (x, y), com o x indicando o eixo horizontal (eixo das abscissas) e o y indicando o eixo vertical (eixo das ordenadas). Quando saímos do plano (espaço 2D ou R2) para o espaço (espaço 3D ou R3), temos a inclusão do eixo z (que indica profundidade). Antes de prosseguirmos, veja uma imagem demonstrando os dois sistemas de coordenadas: ![]() A fórmula para conversão de Coordenadas Polares para Coordenadas Cartesianas é: x = raio × coseno(__$\theta__$) y = raio × seno(__$\theta__$) E aqui está o código LISP completo que recebe as coordenadas polares (r, __$\theta__$) e retorna as coordenadas cartesianas (x, y):
; programa LISP que converte Coordenadas Polares
; em Coordenadas Cartesianas
(let((raio)(theta)(graus)(x)(y))
; vamos ler o raio e o ângulo
(princ "Informe o raio: ")
(force-output)
(setq raio (read))
(princ "Informe o theta: ")
(force-output)
(setq theta (read))
(princ "Theta em graus (1) ou radianos (2): ")
(force-output)
(setq graus (read))
; o theta está em graus?
(if(eq graus 1)
(setq theta (* theta (/ pi 180.0)))
)
; fazemos a conversão para coordenadas cartesianas
(setq x (* raio (cos theta)))
(setq y (* raio (sin theta)))
; exibimos o resultado
(format t "As Coordenadas Cartesianas são: (x = ~F, y = ~F)"
x y)
)
Ao executar este código LISP nós teremos o seguinte resultado: Informe o raio: 1 Informe o theta: 1.57 Theta em graus (1) ou radianos (2): 2 As Coordenadas Cartesianas são: (x = 0,00, y = 1,00) |
JavaScript ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como calcular o cosseno de um ângulo em JavaScript usando a função cos() do objeto Math - Calculadora de cosseno em JavaScriptQuantidade de visualizações: 7822 vezes |
|
Em geral, quando falamos de cosseno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função cosseno disponível nas linguagens de programação para calcular o cosseno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria. No entanto, é sempre importante entender o que é a função cosseno. Veja a seguinte imagem: ![]() Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles. Assim, o cosseno é a razão entre o cateto adjascente e a hipotenusa, ou seja, o cateto adjascente dividido pela hipotenusa. Veja a fórmula: \[\text{Cosseno} = \frac{\text{Cateto adjascente}}{\text{Hipotenusa}} \] Então, se dividirmos 30 por 36.056 (na figura eu arredondei) nós teremos 0.8320, que é a razão entre o cateto adjascente e a hipotenusa (em radianos). Agora, experimente calcular o arco-cosseno de 0.8320. O resultado será 0.5881 (em radianos). Convertendo 0.5881 radianos para graus, nós obtemos 33.69º, que é exatamente o ângulo em graus entre o cateto adjascente e a hipotenusa na figura acima. Pronto! Agora que já sabemos o que é cosseno na trigonometria, vamos entender mais sobre a função cos() da linguagem JavaScript. Esta função, que é parte do objeto Math, recebe um valor numérico e retorna um valor também numérico) entre -1 até 1 (ambos inclusos). Veja:
<html>
<head>
<title>Estudos JavaScript</title>
</head>
<body>
<script type="text/javascript">
// vamos calcular o cosseno de 3 números
document.writeln("Cosseno de 0 = " + Math.cos(0));
document.writeln("<br>Cosseno de 1 = " + Math.cos(1));
document.writeln("<br>Cosseno de 2 = " + Math.cos(2));
</script>
</body>
</html>
Ao executar este código JavaScript nós teremos o seguinte resultado: Cosseno de 0 = 1 Cosseno de 1 = 0.5403023058681398 Cosseno de 2 = -0.4161468365471424 Note que calculamos os cossenos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função cosseno mostrada abaixo: ![]() |
Java ::: Dicas & Truques ::: Threads |
Como usar uma thread Java para animar o título de uma janela JFrame do Java SwingQuantidade de visualizações: 11937 vezes |
|
Nesta dica mostro como podemos usar uma thread para substituir um timer em uma aplicação Swing. Ao executar este código você verá que o texto da barra de títulos da aplicação pisca continuamente enquanto o aplicativo estiver sendo executado. Veja a listagem para o exemplo:
import java.awt.*;
import javax.swing.*;
public class Estudos extends JFrame{
public Estudos() {
super("Uso de threads em aplicações Swing");
// vamos criar a thread que fará o título da janela
// piscar continuamente
// vamos criar duas threads
MinhaThread t1 = new MinhaThread(this);
t1.start();
setSize(350, 250);
setVisible(true);
}
public static void main(String args[]){
Estudos app = new Estudos();
app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
}
// classe que usaremos como thread
class MinhaThread extends Thread{
private JFrame janela;
private String titulo;
public MinhaThread(JFrame janela){
this.janela = janela;
this.titulo = janela.getTitle();
}
public void run(){
try{
while(true){
if(janela.getTitle().equals(""))
janela.setTitle(titulo);
else
janela.setTitle("");
Thread.sleep(300);
}
}
catch(InterruptedException ex){
// precisa fazer nada aqui
}
}
}
Um detalhe interessante é que, ao ser colocada para dormir, a thread usada no exemplo permite que as demais threads da aplicação continuem suas execuções normalmente. Isso permite que a janela seja movida, redimensionada, minimizada, etc. Lembre-se sempre de usar o método Thread.yield() caso a thread criada estiver executando alguma ação demorada. Isso evitará que a janela do programa pareça congelada. |
Desafios, Exercícios e Algoritmos Resolvidos de Java |
Veja mais Dicas e truques de Java |
Dicas e truques de outras linguagens |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
|
1º lugar: Java |








