![]() |
|
||||
![]() Planilha Web - Planilhas e Calculadoras online para estudantes e profissionais de Engenharia Civil, Engenharia Elétrica e Engenharia Mecânica. |
|||||
Você está aqui: Teste de Conhecimento em Engenharia Civil - Estruturas de Concreto Armado |
|
![]() |
C++ ::: Dicas & Truques ::: Matemática e Estatística |
Como testar se um número é par ou ímpar em C++Quantidade de visualizações: 868 vezes |
Muitas vezes precisamos saber se um determinado número é par ou ímpar. Isso pode ser feito em C++ usando-se o operador de módulo "%", que retorna o resto de uma divisão por inteiros. Veja o exemplo a seguir: #include <string> #include <iostream> using namespace std; int main(int argc, char *argv[]){ // variáveis usadas para resolver o problema int num; // vamos ler um número inteiro cout << "Informe um valor inteiro: "; cin >> num; // vamos testar se o número é par if(num % 2 == 0){ cout << "Você informou um número par" << endl; } // é ímpar else{ cout << "Você informou um número ímpar" << endl; } system("PAUSE"); // pausa o programa return EXIT_SUCCESS; } Ao executar este programa C++ nós teremos o seguinte resultado: Informe um valor inteiro: 8 Você informou um numero par |
Python ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como calcular o cateto oposto dadas as medidas da hipotenusa e do cateto adjascente em PythonQuantidade de visualizações: 2871 vezes |
Todos estamos acostumados com o Teorema de Pitágoras, que diz que "o quadrado da hipotenusa é igual à soma dos quadrados dos catetos". Baseado nessa informação, fica fácil retornar a medida do cateto oposto quando temos as medidas da hipotenusa e do cateto adjascente. Isso, claro, via programação em linguagem Python. Comece observando a imagem a seguir: ![]() Veja que, nessa imagem, eu já coloquei os comprimentos da hipotenusa, do cateto oposto e do cateto adjascente. Para facilitar a conferência dos cálculos, eu coloquei também os ângulos theta (que alguns livros chamam de alfa) e beta já devidamente calculados. A medida da hipotenusa é, sem arredondamentos, 36.056 metros. Então, sabendo que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos (Teorema de Pitógoras): \[c^2 = a^2 + b^2\] Tudo que temos que fazer é mudar a fórmula para: \[a^2 = c^2 - b^2\] Veja que agora o quadrado do cateto oposto é igual ao quadrado da hipotenusa menos o quadrado do cateto adjascente. Não se esqueça de que a hipotenusa é o maior lado do triângulo retângulo. Veja agora como esse cálculo é feito em linguagem Python: # vamos importar o módulo Math import math as math def main(): c = 36.056 # medida da hipotenusa b = 30 # medida do cateto adjascente # agora vamos calcular o comprimento da cateto oposto a = math.sqrt(math.pow(c, 2) - math.pow(b, 2)) # e mostramos o resultado print("A medida do cateto oposto é: %f" % a) if __name__== "__main__": main() Ao executar este código Python nós teremos o seguinte resultado: A medida do cateto oposto é: 20.000878 Como podemos ver, o resultado retornado com o código Python confere com os valores da imagem apresentada. |
Delphi ::: Dicas & Truques ::: Data e Hora |
Como retornar a hora atual em Delphi usando as funções Time(), GetTime() e TimeToStr()Quantidade de visualizações: 19641 vezes |
Como retornar a hora atual em Delphi usando as funções Time(), GetTime() e TimeToStr() Em algumas situações precisamos obter a hora atual (apenas a hora, desconsiderando a data) do sistema. Em Delphi isso pode ser feito com o auxílio da função Time(), presente na unit SysUtils. Esta função não requer nenhum argumento e retorna a hora atual como um TDateTime. Veja o exemplo: procedure TForm1.Button1Click(Sender: TObject); var hora: TDateTime; begin // vamos obter a hora atual hora := Time(); // podemos também usar a função GetTime() //hora := GetTime(); // vamos exibir o resultado ShowMessage(TimeToStr(hora)); end; Ao executar este código Delphi nós teremos o seguinte resultado: 15:17:17 Note que podemos também obter a hora atual (sem a data) usando a função GetTime(), também na unit SysUtils. Para fins de compatibilidade, esta dica foi escrita usando Delphi 2009. |
Java ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como obter o valor de PI em Java usando a constante Math.PIQuantidade de visualizações: 21570 vezes |
A constante PI, ou simplesmente PI, é o valor da razão entre a circunferência de qualquer círculo e seu diâmetro. Veja a figura abaixo para melhor entendimento:![]() Em Java, o PI pode ser obtido por meio do uso da constante PI da classe Math. Seu valor é algo como: 3,14159... Veja o trecho de código abaixo: package arquivodecodigos; public class Estudos{ public static void main(String[] args){ // obtém e exibe o valor da constante PI System.out.println("O valor de PI é: " + Math.PI); System.exit(0); } } Ao executar este código nós teremos o seguinte resultado: O valor de PI é: 3.141592653589793 |
Java ::: Dicas & Truques ::: Programação Orientada a Objetos |
Como criar herança em Java usando extends - Programação orientada a objetos em JavaQuantidade de visualizações: 29345 vezes |
Quando estamos projetando as classes que farão parte de um sistema, é aconselhável ter em mente um conceito muito importante da programação orientada a objetos: a herança. O que um aluno, um professor e um funcionário possuem em comum? Todos eles são pessoas e, portanto, compartilham alguns dados comuns. Todos têm nome, idade, endereço, etc. E, o que diferencia um aluno de uma outra pessoa qualquer? Um aluno possui uma matrícula; Um funcionário possui um código de funcionário, data de admissão, salário, etc; Um professor possui um código de professor e informações relacionadas à sua formação. É aqui que a herança se torna uma ferramenta de grande utilidade. Podemos criar uma classe Pessoa, que possui todos os atributos e métodos comuns a todas as pessoas e herdar estes atributos e métodos em classes mais específicas, ou seja, a herança parte do geral para o mais específico. Comece criando uma classe Pessoa (Pessoa.java) como mostrado no código a seguir: public class Pessoa{ public String nome; public int idade; } Esta classe possui os atributos nome e idade. Estes atributos são comuns a todas as pessoas. Veja agora como podemos criar uma classe Aluno que herda estes atributos da classe Pessoa e inclui seu próprio atributo, a saber, seu número de matrícula. Eis o código: public class Aluno extends Pessoa{ public String matricula; } Observe que, em Java, a palavra-chave usada para indicar herança é extends. A classe Aluno agora possui três atributos: nome, idade e matricula. Veja um aplicativo demonstrando este relacionamento: public class Estudos{ public static void main(String args[]){ // cria um objeto da classe Aluno Aluno aluno = new Aluno(); aluno.nome = "Osmar J. Silva"; aluno.idade = 36; aluno.matricula = "AC33-65"; // Exibe o resultado System.out.println("Nome: " + aluno.nome + "\n" + "Idade: " + aluno.idade + "\n" + "Matrícula: " + aluno.matricula); } } Ao executar este código nós teremos o seguinte resultado: Nome: Osmar J. Silva Idade: 36 Matrícula: AC33-65 A herança nos fornece um grande benefício. Ao concentrarmos características comuns em uma classe e derivar as classes mais específicas a partir desta, nós estamos preparados para a adição de novas funcionalidades ao sistema. Se mais adiante uma nova propriedade comum tiver que ser adicionada, não precisaremos efetuar alterações em todas as classes. Basta alterar a superclasse e pronto. As classes derivadas serão automaticamente atualizadas. Esta dica foi testada no Java 8. |
Desafios, Exercícios e Algoritmos Resolvidos de Java |
Veja mais Dicas e truques de Java |
Dicas e truques de outras linguagens |
JavaScript - Como acessar as mídias do usuário em JavaScript usando a função getUserMedia() da interface MediaDevices |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
1º lugar: Java |