Python ::: Desafios e Lista de Exercícios Resolvidos ::: Engenharia Civil - Cálculo Estrutural

Exercícios Resolvidos de Python - Como calcular as reações de apoio, momento de flexão máxima e forças cortantes em uma viga bi-apoiada com carga distribuída retangular usando Python

Quantidade de visualizações: 1782 vezes
Pergunta/Tarefa:

Veja a seguinte figura:



Nesta imagem temos uma viga bi apoiada com uma carga q distribuída de forma retangular a uma distância l. Para fins didáticos, vamos considerar que a carga q será em kN/m e a distância l será em metros. O apoio A é de segundo gênero e o apoio B é de primeiro gênero.

Escreva um programa Python que solicita ao usuário que informe o valor da carga q e a distância l entre os apoios A e B. Em seguida mostre os valores das reações nos apoios A e B, o momento de flexão máxima da viga e o momento de flexão para uma determinada distância (que o usuário informará) a partir do apoio A.

Mostre também as forças cortantes nos apoios A e B. Lembre-se de que, para uma carga distribuída de forma retangular, o diagrama de momento fletor é uma parábola, enquanto o diagrama de cortante é uma reta (com o valor zero para a força cortante no meio da viga).

Sua saída deve ser parecida com:

Valor da carga em kN/m: 10
Distância em metros: 13

A reação no apoio A é: 65.000000 kN
A reação no apoio B é: 65.000000 kN
O momento fletor máximo é: 211.250000 kN.m

Informe uma distância a partir do apoio A: 4
O momento fletor na distância informada é: 180.000000 kN.m

A força cortante no apoio A é: 65.000000 kN
A força cortante no apoio B é: -65.000000 kN
Resposta/Solução:

Veja a resolução comentada deste exercício usando Python:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# Algoritmo que calcula reação de apoio, momento fletor
# e força cortante em uma viga bi-apoiada em Python

# vamos importar o módulo Math
import math

# função principal do programa
def main():
  # vamos pedir para o usuário informar o valor da carga
  carga = float(input("Valor da carga em kN/m: "))
  
  # vamos pedir para o usuário informar a distância entre os apoios
  distancia = float(input("Distancia em metros: "))
  
  # vamos calcular a reação no apoio A
  reacao_a = (1.0 / 2.0) * carga * distancia
  
  # vamos calcular a reação no apoio B
  reacao_b = reacao_a
  
  # vamos calcular o momento fletor máximo
  flexao_maxima = (1.0 / 8.0) * carga * math.pow(distancia, 2.0)
  
  # e mostramos o resultado
  print("\nA reação no apoio A é: {0} kN".format(reacao_a))
  print("A reação no apoio B é: {0} kN".format(reacao_b))
  print("O momento fletor máximo é: {0} kN.m".format(flexao_maxima))
  
  # vamos pedir para o usuário informar uma distância a
  # partir do apoio A
  distancia_temp = float(input("\nInforme uma distância a partir do apoio A: "))
  # vamos mostrar o momento fletor na distância informada
  if distancia_temp > distancia:
    print("\nDistância inválida.")
  else:
    flexao_distancia = (1.0 / 2.0) * carga * distancia_temp * \
      (distancia - distancia_temp)
    print("O momento fletor na distância informada é: {0} kN.m".format(
      flexao_distancia))  
   
  # vamos mostrar a força cortante no apoio A
  cortante_a = (1.0 / 2.0) * carga * distancia
  print("\nA força cortante no apoio A é: {0} kN".format(cortante_a))
  
  # vamos mostrar a força cortante no apoio B
  cortante_b = cortante_a * -1
  print("A força cortante no apoio B é: {0} kN".format(cortante_b))
  
if __name__== "__main__":
  main()



GNU Octave ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular o coeficiente angular de uma reta em GNU Octave dados dois pontos no plano cartesiano

Quantidade de visualizações: 1625 vezes
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x.

Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano:



Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é:

\[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \]

Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente.

Veja agora o trecho de código na linguagem GNU Octave (script GNU Octave) que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# x e y do primeiro ponto
x1 = input("Coordenada x do primeiro ponto: ")
y1 = input("Coordenada y do primeiro ponto: ")

# x e y do segundo ponto
x2 = input("Coordenada x do segundo ponto: ")
y2 = input("Coordenada y do segundo ponto: ")

# agora vamos calcular o coeficiente angular
m = (y2 - y1) / (x2 - x1)

# mostramos o resultado
fprintf("O coeficiente angular é: %f\n\n", m)

Ao executar este código em linguagem GNU Octave nós teremos o seguinte resultado:

Coordenada x do primeiro ponto: 3
x1 = 3
Coordenada y do primeiro ponto: 6
y1 = 6
Coordenada x do segundo ponto: 9
x2 = 9
Coordenada y do segundo ponto: 10
y2 = 10
m = 0.6667
O coeficiente angular é: 0.666667

Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$):

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# x e y do primeiro ponto
x1 = input("Coordenada x do primeiro ponto: ")
y1 = input("Coordenada y do primeiro ponto: ")

# x e y do segundo ponto
x2 = input("Coordenada x do segundo ponto: ")
y2 = input("Coordenada y do segundo ponto: ")

# vamos obter o comprimento do cateto oposto
cateto_oposto = y2 - y1
# e agora o cateto adjascente
cateto_adjascente = x2 - x1
# vamos obter o ângulo tetha, ou seja, a inclinação da hipetunesa
# (em radianos, não se esqueça)
tetha = atan2(cateto_oposto, cateto_adjascente)
# e finalmente usamos a tangente desse ângulo para calcular
# o coeficiente angular
tangente = tan(tetha)

# mostramos o resultado
fprintf("O coeficiente angular é: %f\n\n", tangente)

Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta:

1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0;

2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0;

3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0).

4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe.


Java ::: Desafios e Lista de Exercícios Resolvidos ::: Arrays e Matrix (Vetores e Matrizes)

Exercício Resolvido de Java - Desenvolva um programa que leia dez números do tipo inteiro ao usuário Armazene esses dez números em um vetor

Quantidade de visualizações: 1470 vezes
Exercício Resolvido de Java - Desenvolva um programa que leia dez números do tipo inteiro ao usuário. Armazene esses dez números em um vetor

Pergunta/Tarefa:

Desenvolva um programa que leia dez números do tipo inteiro ao usuário. Armazene esses dez números em um vetor. Para os valores dos elementos inseridos nas posições pares desse vetor, calcule o somatório deles, para os demais calcule a subtração desses valores. Em seguida, o programa deverá apresentar na tela os resultados.

Sua saída deverá ser parecida com:

Digite o 1.o número inteiro: 5
Digite o 2.o número inteiro: 1
Digite o 3.o número inteiro: 2
Digite o 4.o número inteiro: 3
Digite o 5.o número inteiro: 7
Digite o 6.o número inteiro: 8
Digite o 7.o número inteiro: 10
Digite o 8.o número inteiro: 54
Digite o 9.o número inteiro: 4
Digite o 10.o número inteiro: 5
A soma dos números nas posições pares é: 28
A subtração dos números nas posições ímpares é: -71
Resposta/Solução:

Veja a resolução comentada deste exercício usando Java:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

package estudos;

import java.util.Scanner;

public class Estudos {
  public static void main(String[] args) {
    // para ler a entrada do usuário
    Scanner entrada = new Scanner(System.in);

    int numeros[] = new int[10]; // vetor para guardar os 10 números inteiros
    int soma = 0; // soma dos números nas posições pares
    int subtracao = 0; // subtração dos números nas posições impares
    
    // vamos fazer a leitura dos 10 valores inteiros
    for(int i = 0; i < numeros.length; i++){
      System.out.print("Digite o " + (i + 1) + ".o número inteiro: ");
      numeros[i] = Integer.parseInt(entrada.nextLine());
    }
    
    // agora vamos percorrer o vetor e obter a soma dos elementos nas posições
    // pares e a subtração dos elementos nas posições ímpares
    for(int i = 0; i < numeros.length; i++){
      if(i % 2 == 0){
        // posição par
        soma = soma + numeros[i];
      }
      else{
        // posição ímpar
        subtracao = subtracao - numeros[i];
      }
    }
    
    System.out.println("A soma dos números nas posições pares é: " + soma);
    System.out.println("A subtração dos números nas posições ímpares é: " 
      + subtracao);
  }
}



PHP ::: Fundamentos da Linguagem ::: Tipos de Dados

Como usar o tipo de dados object da linguagem PHP

Quantidade de visualizações: 7950 vezes
O PHP, especialmente a partir da versão 5.0, suporta a programação orientada a objetos (OOP). A programação OOP promove um design modular limpo, simplifica a depuração e manutenção e facilita a reutilização de códigos.

As classes são os pontos cruciais de um design orientado a objetos. Uma classe é uma definição de uma estrutura que contém propriedades (variáveis) e métodos (funções). Classes são definidas com a palavra-chave class:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

class Pessoa{
  public $nome = '';

  function nome($novo_nome = NULL){
    if(!is_null($novo_nome)){
      $this->nome = $novo_nome;
    }
    
    return $this->nome;
  }
}

Uma vez que uma classe é definida, qualquer número de objetos podem ser construídos a partir dela por meio do uso da palavra-chave new, e as propriedades e métodos do objeto podem ser acessadas com a construção ->. Veja:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

  $pessoa = new Pessoa;
  $pessoa->nome('Osmar J. Silva');
  printf("Olá, %s<br>", $pessoa->nome);

Se quisermos saber se uma variável é do tipo object, podemos usar a função is_object(). Veja:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

<?  
  class Pessoa{
    public $nome = '';

    function nome($novo_nome = NULL){
      if(!is_null($novo_nome)){
        $this->nome = $novo_nome;
      }
    
      return $this->nome;
    }
  }
  
  $pessoa = new Pessoa;

  if(is_object($pessoa)){
    echo 'A variável $pessoa é do tipo object.';
  }
?>

Ao executarmos este código PHP nós teremos o seguinte resultado:

A variável $pessoa é do tipo object.


Nossas 20 dicas & truques de programação mais populares

Você também poderá gostar das dicas e truques de programação abaixo

Nossas 20 dicas & truques de programação mais recentes

Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site

Últimos Exercícios Resolvidos

E-Books em PDF

E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser. Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 32,90


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 41 usuários muito felizes estudando em nosso site.