Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO

Python ::: Python para Engenharia ::: Física - Hidrodinâmica

Como representar a Equação da Continuidade em Python - Python para Hidrodinâmica

Quantidade de visualizações: 519 vezes
O que é a Equação da Continuidade?

A Hidrodinâmica é a parte da Física que estuda os fluidos em movimento, enquanto a Equação da Continuidade, que é parte da Hidrodinâmica, determina o fluxo de um fluido através de uma área. Esta equação está muito presente quando o assunto é Dinâmica dos Fluidos ou Mecânica dos Fluidos.

A Equação da Continuidade é uma consequência direta da Lei da Conservação da Massa. Por meio dessa propriedade, podemos dizer que a quantidade de massa de fluido que atravessa o tubo é a mesma na entrada e na saída.

Para melhor entendimento veja a seguinte figura:



Sabendo que a quantidade de água que entra na mangueira deve ser igual à mesma quantidade que sai, ao colocarmos o dedo na saída da mangueira, nós estamos estreitando a área da vazão, o que, consequentemente, aumenta a velocidade da água.

Qual é a Fórmula da Equação da Continuidade?

Antes de passarmos ao código Python, vamos revisar a Fórmula da Equação da Continuidade. Veja:

\[ A_1 \cdot \text{v}_1 = A_2 \cdot \text{v}_2 \]

Por meio dessa equação nós entramos com três valores e obtemos um quarto valor. Não se esqueça de que as velocidades são dadas em metros por segundo e as áreas são dadas em metros quadrados (de acordo com o SI - Sistema Internacional de Medidas). Tenha a certeza de efetuar as devidas conversões para não obter resultados incorretos.

Vamos escrever código Python agora?

A Equação da Continuidade em código Python

Para exemplificar como podemos representar a Equação da Continuidade em Python, vamos resolver o seguinte problema?

1) Um fluido escoa a 2 m/s em um tubo de área transversal igual a 200 mm2. Qual é a velocidade desse fluido ao sair pelo outro lado do tubo, cuja área é de 100 mm2?

a) 20 m/s

b) 4 m/s

c) 0,25 m/s

d) 1,4 m/s

e) 0,2 m/s

Note que a velocidade já está em metros por segundo, mas as áreas foram dadas em milímetros quadrados. Por essa razão nós deveremos converter milímetros quadrados em metros quadrados.

Veja o código Python completo para a resolução deste exercício de Equação da Continuidade:

# função principal do programa
def main():
  # vamos solicitar os dados de entrada
  v1 = float(input("Velocidade de entrada (m/s): "))
  a1 = float(input("Área de entrada (milímetros quadrados): "))
  a2 = float(input("Área de saída (milímetros quadrados): "))
    
  # vamos converter as áreas em milímetros quadrados
  # para metros quadrados
  a1 = a1 / 1000000
  a2 = a2 / 1000000
    
  # agora calculamos a velocidade de saída
  v2 = (a1 * v1) / a2
    
  # e mostramos o resultado
  print("A velocidade de saída é: {0} m/s".format(v2))
  
if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Velocidade de entrada (m/s): 2
Área de entrada (milímetros quadrados): 200
Área de saída (milímetros quadrados): 100
A velocidade de saída é: 4.0 m/s

Portanto, a velocidade do fluido na saída do tubo é de 4 m/s.


AutoCAD Civil 3D ::: Dicas & Truques ::: Coordinated Geometry Points (COGO Points)

Como criar pontos COGO no AutoCAD Civil 3D

Quantidade de visualizações: 767 vezes
Nesta dica mostrarei os passos necessários para a criação de COGO points no Civil 3D usando a opção Manual do Point Creation Tools.

Siga os passos abaixo atentamente:

A) Vá até a guia Home. Em seguida acesse o painel Create Ground Data.

B) No painel Create Ground Data, acesse a opção Points -> Point Creation Tools.

C) Será aberto um painel flutuante chamado Create Points. Na primeira opção deste painel, clique a seta ao lado do primeiro botão e marque a opção Manual (talvez já esteja marcada).

D) Agora é só clicar no botão (ao lado da seta que você acabou de acessar). Na janela de comandos do Civil 3D nós veremos a mensagem:

CREATEPOINTMANUAL Please specify a location for the new point:

Você pode clicar na tela de desenho ou informar as coordenadas x e y manualmente, por exemplo, 50,100 (o valor x para a coordenada x e o valor 100 para a coordenada y, sem espaços e com a vírgula separando os dois valores).

Note que o x é o Easting (distância para o Leste) e y é o Northing (distância para o Norte). Verifique se nas suas configurações esta é a ordem padrão.

E) Depois de informar as coordenadas x e y do COGO point, uma mensagem será exibida solicitando a descrição do ponto:

CREATEPOINTMANUAL Enter a point description <.>:

Aqui podemos informar o nome do ponto, por exemplo, BUEIRO 5.

F) Após informarmos a descrição do ponto, a seguinte mensagem é exibida:

CREATEPOINTMANUAL Specify a point elevation <.>:

Aqui nós precisamos informar a elevação do ponto e pressionar Enter. Nesse momento o novo COGO Point é criado e o Civil 3D reiniciará o processo, ou seja, será solicitada a localização do próximo ponto.

Se você não quiser continuar criando novos pontos, basta pressionar a tecla Enter.

Para visualizar os pontos criados, vá até o Painel Toolspace, aba Prospector e acesse o item Points.


C++ ::: Dicas & Truques ::: Strings e Caracteres

Como acessar os caracteres de uma string C++ individualmente usando um iterador

Quantidade de visualizações: 11458 vezes
Nesta dica mostrarei como podemos usar um iterador para percorrer todos os caracteres de uma palavra, frase ou texto em C++. Para isso nós vamos combinar um iterator e as funções begin() e end().

Veja o código C++ completo para o exemplo:

#include <string>
#include <iostream>
 
using namespace std;
 
// função principal do programa C++ 
int main(int argc, char *argv[]){
  // vamos declarar um objeto da classe string
  string palavra("FACULDADE");
  
  // agora criamos um iterador para a string
  string::iterator it;
   
  // e usamos um laço for para percorrer o iterador
  // do início ao fim 
  for(it = palavra.begin(); it < palavra.end(); it++){
    // e mostramos os caracteres individuais
    cout << *it << "\n";
  } 
     
  cout << "\n" << endl;	    
  system("PAUSE"); // pausa o programa
  return EXIT_SUCCESS;
}

Ao executar este código C++ nós teremos o seguinte resultado:

F
A
C
U
L
D
A
D
E


Python ::: Desafios e Lista de Exercícios Resolvidos ::: Hidrologia e Hidráulica

Exercícios Resolvidos de Python - FEMPERJ-2012-TCE-RJ: A vazão de dimensionamento de uma galeria de águas pluviais que drena uma área densamente urbanizada de 10 hectares

Quantidade de visualizações: 808 vezes
Pergunta/Tarefa:

1) FEMPERJ-2012-TCE-RJ: A vazão de dimensionamento de uma galeria de águas pluviais que drena uma área densamente urbanizada de 10 hectares, considerando-se uma chuva de projeto com intensidade de 60 mm/hora, duração igual ao tempo de concentração da bacia e coeficiente de escoamento superficial igual a 0,90, através do Método Racional, é:

A) 150 m3/s

B) 0,150 l/s

C) 1,5 m3/s

D) 150 l/s

E) 15 m3/s

Sua saída deve ser parecida com:

Intensidade da chuva em mm/h: 60
Área da bacia em hectares: 10
Coeficiente de escoamento: 0.9
A vazão de dimensionamento é: 1.5 m3/s
Resposta/Solução:

O primeiro passo para resolver esta questão é relembrar a fórmula da Vazão pelo Método Racional. Apresentado pela primeira vez em 1851 por Mulvaney e usado por Emil Kuichling em 1889, o Método Racional é um método indireto e estabelece uma relação entre a chuva e o escoamento superficial (deflúvio).

Usamos esta fórmula para calcular a vazão de pico de uma determinada bacia, considerando uma seção de estudo.

Eis a fórmula:

\[Q = \frac{C \cdot I \cdot A}{360} \]

Onde:

Q = vazão de pico (m3/s);

C = coeficiente de escoamento superficial que varia de 0 a 1. Coeficiente de Runoff (adimensional).

I = intensidade média da chuva (mm/h);

A = área da bacia (ha), onde 1 ha = 10.000m2. A [[menor_igual]] 300 ha.

Na questão do concurso nós já temos a intensidade da chuva em milímetros por hora e a área já está em hectares. Tudo que temos a fazer é jogar na fórmula.

Então, hora de vermos a resolução comentada deste exercício usando Python:

# função principal do programa
def main():
  # vamos ler a precipitação ou intensidade da chuva em mm/h
  intensidade = float(input("Intensidade da chuva em mm/h: "))
    
  # vamos ler a área da bacia em hectares
  area_bacia = float(input("Área da bacia em hectares: "))
  
  # vamos ler o coeficiente de escoamento
  coeficiente = float(input("Coeficiente de escoamento: "))
    
  # e vamos calcular a vazão de pico em metros cúbicos
  vazao = ((coeficiente * intensidade * area_bacia) / 360.0)
    
  # e mostramos o resultado
  print("A vazão de dimensionamento é: {0} m3/s".format(vazao))
  
if __name__== "__main__":
  main()



Nossas 20 dicas & truques de programação mais populares

Você também poderá gostar das dicas e truques de programação abaixo

Nossas 20 dicas & truques de programação mais recentes

Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site

Últimos Exercícios Resolvidos

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser. Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 32,90

Planilha Web - Planilhas e Calculadoras online para estudantes e profissionais de Engenharia Civil, Engenharia Elétrica e Engenharia Mecânica.


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 54 usuários muito felizes estudando em nosso site.