Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO

Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesCódigo-Fonte Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades
Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais
Delphi ::: Dicas & Truques ::: MIDI Musical Instrument Digital Interface, Mapeamento e sequenciamento MIDI, Entrada e saída MIDI

Como abrir e fechar um dispositivo de saída MIDI usando Delphi

Quantidade de visualizações: 11624 vezes
Quando queremos executar sons MIDI no Windows, a primeira tarefa a ser realizada é abrir o dispositivo de saída MIDI. Isso é feito com uma chamada à função midiOutOpen() da API do Windows. Veja sua assinatura (em C):

MMRESULT midiOutOpen(
  LPHMIDIOUT lphmo,              
  UINT_PTR   uDeviceID,          
  DWORD_PTR  dwCallback,         
  DWORD_PTR  dwCallbackInstance, 
  DWORD      dwFlags             
);

Esta função está traduzida na unit MMSystem.pas do Delphi da seguinte forma:

function midiOutOpen(lphMidiOut: PHMIDIOUT; uDeviceID: UINT;
  dwCallback, dwInstance, dwFlags: DWORD): MMRESULT; stdcall;

Antes de continuarmos, vamos entender os parâmetros desta função:

lphmo - Este é um ponteiro para um HMIDIOUT (que é simplemente um Integer). Este ponteiro é preenchido com um handle identificando o dispositivo de saída MIDI aberto. Este handle é usado para identificar o dispositivo nas demais chamadas de saída MIDI.

uDeviceID - Identificador do dispositivo de saída MIDI a ser aberto. O valor 0 aqui é seguro, visto que este identifica o primeiro dispositivo na lista de dispositivos de saída. Veja minha dica "Como obter uma lista dos dispositivos de saída MIDI no sistema" para mais informações.

dwCallback - Um ponteiro para uma função de callback, um handle de evento, um identificador de thread ou um handle para uma janela ou thread chamada durante o playback do MIDI para processar mensagens relacionadas ao processo de playback. Se não houver nada a ser processado, podemos definir o valor 0 para este parâmetro. Dê uma olhada na minha dica relacionada à função MidiOutProc().

dwCallbackInstance - Dados de instância do usuário passados para a função de callback. Este parâmetro não é usado em callbacks de janela e thread. É seguro manter seu valor como 0.

dwFlags - Flag de callback para abrir o dispositivo. Por enquanto vamos manter seu valor como CALLBACK_NULL. Veja minhas outras dicas sobre o assunto para aprofundar mais neste parâmetro.

Agora que aprendemos mais sobre os parâmetros da função midiOutOpen(), vamos ver como usá-la para abrir um dispositivo de saída MIDI e tocar a nota DÓ média (aquela no meio da escala de notas possíveis). Veja o código completo para a unit:

unit Unit2;

interface

uses
  Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
  Dialogs, StdCtrls, MMSystem;

type
  TForm2 = class(TForm)
    Button1: TButton;
    procedure Button1Click(Sender: TObject);
  private
    { Private declarations }
    dispositivo: HMIDIOUT; // dispositivo de saída MIDI
  public
    { Public declarations }
  end;

var
  Form2: TForm2;

implementation

{$R *.dfm}

procedure TForm2.Button1Click(Sender: TObject);
var
  erro: Word;
begin
  erro := midiOutOpen(@dispositivo, 0, 0, 0, CALLBACK_NULL);

  // houve erro na abertura do dispositivo de saída MIDI?
  if (erro <> 0) then
    begin
      ShowMessage('Não foi possível abrir o dispositivo MIDI. Erro: ' + IntToStr(erro));
    end
  else
    begin
      ShowMessage('Dispositivo MIDI aberto com sucesso.');

      // vamos tocar uma nota para nos certificarmos de que o dispositivo
      // realmente foi aberto e está funcionando

      // vamos tocar a nota DÓ média e com velocidade máxima
      midiOutShortMsg(dispositivo, rgb($90, 60, 127));
      // vamos deixar a nota soar um pouco
      sleep(1000);
      // vamos silenciar a nota
      midiOutShortMsg(dispositivo, rgb($80, 60, 0));

      // finalmente vamos fechar o dispositivo MIDI
      midiOutClose(dispositivo);
    end;
end;

end.

O primeiro passo foi declarar uma variável do tipo HMIDIOUT:

dispositivo: HMIDIOUT;

Este é o dispositivo de saída que será usado nas demais chamadas MIDI, incluindo a função midiOutClose(), usada para fechar o dispositivo:

midiOutClose(dispositivo);

Na API do Windows está função está declarada da seguinte forma:

MMRESULT midiOutClose(
  HMIDIOUT hmo  
);

Na unit MMSystem.pas do Delphi está função está traduzida da seguinte forma:

function midiOutClose(hMidiOut: HMIDIOUT): MMRESULT; stdcall;

Veja que só precisamos fornecer o nome da variável representando o dispositivo de saída MIDI aberto no momento para que a função se encarregue de fechá-lo.


C++ ::: Dicas & Truques ::: MIDI Musical Instrument Digital Interface, Mapeamento e sequenciamento MIDI, Entrada e saída MIDI

Programação MIDI usando C++ - Como usar um vetor de chars para construir uma mensagem MIDI e passá-lo para a função midiOutShortMsg() da API do Windows

Quantidade de visualizações: 2659 vezes
Nas dicas dessa seção nós vimos como é possível enviar uma mensagem MIDI para o dispositivo de saída por meio da função midiOutShortMsg() da API do Windows. Essa função recebe um handle para o dispositivo de saída MIDI e um valor DWORD contendo a mensagem MIDI.

Se você revisitar essas dicas, verá que na maioria delas nós informamos a mensagem MIDI diretamente no parâmetro da função (como um valor hexadecimal). Nesta dica mostrarei como é possível construir as mensagens MIDI usando seus valores individuais e, o que é melhor, usando valores decimais.

Para isso nós vamos construir um vetor de char e informar os valores que compõem a mensagem. É importante observar que a função midiOutShortMsg() exige que a mensagem MIDI seja informada na ordem de bytes "little endian" ou seja, o status MIDI é informado no byte de ordem mais baixa. Isso é conseguido com um cast do vetor para um unsigned long.

Veja o trecho de código:

// vamos criar um vetor contendo os valores que compõem a mensagem MIDI
unsigned char vetor[4];
vetor[0] = 144; // Note-on no Canal 1
vetor[1] = 40; // Nota Mi na 4ª oitava
vetor[2] = 100; // Velocidade/volume da nota
vetor[3] = 0; // Não é usado
// e aqui é que acontece a mágica. Quando fazemos o cast do
// vetor para o tipo long sem sinal, os valores são colocados em
// little endian, justamente a ordem de bytes esperada pela
// função midiOutShortMsg()
unsigned long mensagem = *(unsigned long*)vetor;
// envia a mensagem MIDI
midiOutShortMsg(saida, mensagem);

Note que não coloquei o código todo. Para completá-lo, veja outras dicas dessa seção.


Python ::: Dicas & Truques ::: Formatação de datas, strings e números

Python para matemática - Como definir a precisão (casas decimais) na exibição de um valor de ponto-flutuante em Python

Quantidade de visualizações: 15568 vezes
Este trecho de código mostra como definir a precisão com que um número de ponto-flutuante será exibido. Atenção: Arredondamentos podem ocorrer dependendo da redução das casas decimais.

Veja o código Python completo para a dica:

def main():
  valor = 43.13985765
 
  # com dois dígitos
  print("O valor e %.2f" % valor)
 
  # com três dígitos
  print("O valor e %.3f" % valor)
 
  # com um dígito
  print("O valor e %.1f" % valor)

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

O valor é 43.14
O valor é 43.140
O valor é 43.1


Python ::: Estruturas de Dados ::: Lista Ligada Simples

Como excluir um nó no final de uma lista encadeada simples em Python

Quantidade de visualizações: 1484 vezes
Nesta dica mostrarei como podemos escrever um método remover_final() que remove e retorna o nó no final de uma lista encadeada simples em Python, ou seja, excluí o último nó da lista.

É importante observar que o método exclui o último nó e o retorna completo, inclui o valor que está incluído nele. Se a lista estiver vazia o método retorna o valor None para indicar lista vazia.

Vamos começar então com o código para a classe No da lista singularmente ligada (que salvei em um arquivo no_lista_singularmente_ligada.py):

# classe No para uma lista singularmente encadeada ou
# ligada - Singly Linked List
class No:
  # construtor da classe No
  def __init__(self, info, proximo):
    self.info = info
    self.proximo = proximo

  # método que permite definir o conteúdo do nó
  def set_info(self, info):
    self.info = info

  # método que permite obter a informação de um nó 
  def get_info(self):
    return self.info

  # método que permite definir o campo próximo deste nó
  def set_proximo(self, proximo):
    self.proximo = proximo

  # método que permite obter o campo próximo deste nó
  def get_proximo(self):
    return self.proximo

  # retorna True se este nó apontar para outro nó
  def possui_proximo(self):
    return self.proximo != None

Veja que o código para a classe Nó não possui muitas firulas. Temos apenas um campo info, que guardará o valor do nó, e um campo próximo, que aponta para o próximo nó da lista, ou null, se este for o único nó ou o último nó da lista ligada.

Veja agora o código para a classe ListaLigadaSimples (lista_ligada_simples.py), com os métodos inserir_inicio(), remover_final() e exibir():

# importa a classe No
from no_lista_singularmente_ligada import No

# classe ListaLigadaSimples   
class ListaLigadaSimples:
  # construtor da classe
  def __init__(self):
    self.inicio = None # nó inicial da lista

  # método que deleta um nó no final de uma lista ligada
  # este método retorna o nó excluído
  def remover_final(self):
    # a lista está vazia?  
    if self.inicio == None:
      return None
    else:
      # vamos excluir e retornar o primeiro nó da lista
      removido = self.inicio
      
      # a lista possui apenas um nó?
      if self.inicio.get_proximo() == None:
        # a lista agora ficará vazia
        self.inicio = None
      else:
        # começamos apontando para o início da lista   
        no_atual = self.inicio
        no_anterior = self.inicio

        # enquanto o próximo do nó atual for diferente de nulo
        while no_atual.get_proximo() != None:
          # avançamos o nó anterior
          no_anterior = no_atual
          # saltamos para o próximo nó
          no_atual = no_atual.get_proximo()

        # na estamos na posição de exclusão
        removido = no_atual
        no_anterior.set_proximo(None)
    
    # retorna o nó removido
    return removido

  # método que permite inserir um novo nó no início da lista
  def inserir_inicio(self, info):
    # cria um novo nó contendo a informação e que
    # não aponta para nenhum outro nó
    novo_no = No(info, None)
    
    # a lista ainda está vazia?
    if self.inicio == None:
      # o novo nó será o início da lista  
      self.inicio = novo_no
    else:
      # o novo nó aponta para o início da lista
      novo_no.set_proximo(self.inicio)
      # o novo nó passa a ser o início da lista
      self.inicio = novo_no


  # método que permite exibir todos os nós da lista
  # ligada simples (lista singularmente encadeada)
  def exibir(self):
    # aponta para o início da lista
    no_atual = self.inicio
    # enquanto o nó não for nulo
    while no_atual != None:
      # exibe o conteúdo do nó atual  
      print(no_atual.get_info())
      # pula para o próximo nó
      no_atual = no_atual.get_proximo()

E agora o código main() que insere alguns valores no início da nossa lista singularmente encadeada e testa o método remover_final():

# importa a classe ListaLigadaSimples
from lista_singularmente_ligada import ListaLigadaSimples

# método principal  
def main():
  # cria uma nova lista encadeada simples
  lista = ListaLigadaSimples()

  print("Insere o valor 12 no início da lista")
  lista.inserir_inicio(12)
  print("Conteúdo da lista: ")
  lista.exibir()
  print("Insere o valor 30 no início da lista")
  lista.inserir_inicio(30)
  print("Conteúdo da lista: ")
  lista.exibir()
  print("Insere o valor 27 no início da lista")
  lista.inserir_inicio(27)
  print("Conteúdo da lista: ")
  lista.exibir()

  print("Remove um nó no final da lista")
  removido = lista.remover_final()
  if removido == None:
    print("Não foi possível remover. Lista vazia")
  else:
    print("Nó removido:", removido.get_info())  
  print("Conteúdo da lista: ")
  lista.exibir()

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

c:\estudos_python>python estudos.py
Insere o valor 12 no início da lista
Conteúdo da lista:
12
Insere o valor 30 no início da lista
Conteúdo da lista:
30
12
Insere o valor 27 no início da lista
Conteúdo da lista:
27
30
12
Remove um nó no final da lista
Nó removido: 12
Conteúdo da lista:
27
30


Nossas 20 dicas & truques de programação mais populares

Você também poderá gostar das dicas e truques de programação abaixo

Nossas 20 dicas & truques de programação mais recentes

Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site

Últimos Exercícios Resolvidos

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser. Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 19,90


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 35 usuários muito felizes estudando em nosso site.