Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO

Java ::: Dicas & Truques ::: Input e Output (Entrada e Saída)

Java para iniciantes - Como usar a classe File em suas aplicações Java

Quantidade de visualizações: 11199 vezes
A classe File, contida no pacote java.io, é uma representação abstrata de nomes de arquivos e diretórios. Veja sua posição na hierarquia de classes Java:

java.lang.Object
  java.io.File

Esta classe implementa as interfaces: Serializable e Comparable<File>. Instâncias desta classe são imutáveis, ou seja, uma vez criado, o caminho abstrato representado por um objeto File nunca mudará.

É importante observar que, ao criar uma instância de File, como no código abaixo:

File arquivo = new File("C:\\", "texto.txt");

o arquivo "texto.txt" não será criado. O que temos é a construção de um objeto File. Da mesma forma, quando destruímos um objeto File, o arquivo representado por ele no sistema não será excluído.


Python ::: Python para Engenharia ::: Engenharia Civil - Cálculo Estrutural

Como calcular os esforços solicitantes majorados em pilares usando Python - Python para Engenharia Civil

Quantidade de visualizações: 789 vezes


Quando estamos dimensionando pilares em concreto armado em geral, a primeira coisa que devemos fazer é calcular os esforços solicitantes, ou seja, as cargas que estão chegando ao pilar.

No caso dos pilares intermediários, ou seja, pilares que residem fora dos cantos e extremidades da estrutura e que, por isso, recebem a carga em seu centro geométrico, considera-se a compressão centrada. Dessa forma, chamamos de Nk o somatório de todas as cargas verticais atuantes na estrutura e podemos desprezar as excentricidades de 1ª ordem.

De acordo com a NBR 6118 (ABNT, 2014), para a situação de projeto, essa força normal Nk deve ser majorada pelos coeficientes &#947;n e &#947;f, resultando em uma força normal de projeto chamada Nd.

O coeficiente &#947;n deve majorar os esforços solicitantes finais de cálculo de acordo com a menor dimensão do pilar. A norma diz que a menor dimensão que um pilar pode ter é 19cm, mas, em alguns casos, podemos ter a menor dimensão de até 14cm, precisando, para isso, majorar os esforços solicitantes. Nos comentários do código Python eu mostro como esse cálculo é feito, de acordo com a NBR 6118 (ABNT, 2014), é claro.

O coeficiente &#947;f, na maioria dos casos, possui o valor 1,4 e entra no cálculo para converter a força normal Nk em força normal de projeto Nd.

A fórmula para o cálculo dos esforços solicitantes majorados em pilares intermediários é:

\[ Nd = \gamma n \cdot \gamma f \cdot Nk \]

Onde:

&#947;n majora os esforços de acordo com a menor dimensão do pilar de acordo com a NBR 6118 (ABNT, 2014).

&#947;f em geral possui o valor 1.4 para majorar os esforços em estruturas de concreto armado.

Nk é a força normal característica aplicada ao pilar, em kN.

Nd é a força normal de projeto, em kN.

Vamos então ao código Python, que solicitará ao usuário os valores de suas dimensões hx e hy (em centímetros) e a carga, ou seja, a força normal característica chegando no pilar em kN e vamos mostrar a força normal de projeto Nd:

# método principal
def main():
  # vamos pedir as dimensões do pilar
  hx = float(input("Informe a dimensão do pilar na direção x (em cm): "))
  hy = float(input("Informe a dimensão do pilar na direção y (em cm): "))

  # vamos pedir a carga total no pilar em kN
  Nk = float(input("Informe a carga total no pilar (em kN): "))

  # vamos obter o menor lado do pilar (menor dimensão da seção transversal)
  if (hx < hy):
    b = hx
  else:
    b = hy
  
  # agora vamos calcular a área do pilar em centímetros quadrados
  area = hx * hy

  # a área está de acordo com a norma NBR 6118 (ABNT, 2014)
  if (area < 360):
    print("A área do pilar não pode ser inferior a 360cm2")
    return

  # vamos calcular a força normal de projeto Nd
  yn = 1.95 - (0.05 * b) # de acordo com a norma NBR 6118 (ABNT, 2014) Tabela 13.1
  yf = 1.4 # regra geral para concreto armado
  Nd = yn * yf * Nk

  # e mostramos os resultados
  print("\nA área do pilar é: {0} cm2".format(round(area, 2)))
  print("A menor dimensão do pilar é: {0} cm".format(round(b, 2)))
  print("O valor do coeficiente yn é: {0}".format(round(yn, 2)))
  print("A força normal de projeto Nd é: {0} kN".format(round(Nd, 2)))

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Informe a dimensão do pilar na direção x (em cm): 40
Informe a dimensão do pilar na direção y (em cm): 19
Informe a carga total no pilar (em kN): 841.35

A área do pilar é: 760.0 cm2
A menor dimensão do pilar é: 19.0 cm
O valor do coeficiente yn é: 1.0
A força normal de projeto Nd é: 1177.89 kN


Portugol ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular o coeficiente angular de uma reta em Portugol dados dois pontos no plano cartesiano

Quantidade de visualizações: 743 vezes
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x.

Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano:



Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é:

\[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \]

Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente.

Veja agora o trecho de código na linguagem Portugol que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos:

// Calcular o coeficiente angular de uma reta em Portugol

programa {
  // vamos incluir a biblioteca Matematica
  inclua biblioteca Matematica --> mat
  
  funcao inicio() {
    // coordenadas dos dois pontos
    real x1, y1, x2, y2
    // guarda o coeficiente angular
    real m

    // x e y do primeiro ponto
    escreva("Coordenada x do primeiro ponto: ")
    leia(x1)
    escreva("Coordenada y do primeiro ponto: ")
    leia(y1)

    // x e y do segundo ponto
    escreva("Coordenada x do segundo ponto: ")
    leia(x2)
    escreva("Coordenada y do segundo ponto: ")
    leia(y2)

    // vamos calcular o coeficiente angular
    m = (y2 - y1) / (x2 - x1)

    // mostramos o resultado
    escreva("O coeficiente angular é: ", m) 
  }
}

Ao executar este código Portugol Webstudio nós teremos o seguinte resultado:

Coordenada x do primeiro ponto: 3
Coordenada y do primeiro ponto: 6
Coordenada x do segundo ponto: 9
Coordenada y do segundo ponto: 10
O coeficiente angular é: 0.6666666666666666

No entanto, fique atento às propriedades do coeficiente angular da reta:

1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0;

2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0;

3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0).

4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe.


C# ::: Dicas & Truques ::: Arquivos e Diretórios

Como testar se um diretório existe em C# usando a propriedade Exists da classe DirectoryInfo

Quantidade de visualizações: 1 vezes
Em algumas situações nós precisamos verificar se um diretório existe em C#, talvez para ler ou gravar dados neste arquivo. Isso pode ser feito por meio da propriedade Exists da classe DirectoryInfo.

Esta propriedade retorna um valor true se o diretório existir e false em caso contrário.

Veja o código completo para o exemplo:

using System;
using System.IO;

namespace Estudos {
  class Principal {
    static void Main(string[] args) {
      // vamos criar uma nova instância da classe DirectoryInfo
      DirectoryInfo dir = new DirectoryInfo(@"C:\estudos_csharp\imagens");

      // vamos testar se o diretório existe
      if (dir.Exists) {
        Console.Write("Diretório existe");
      }
      else {
        Console.Write("Diretório não existe");
      }

      Console.WriteLine("\nPressione uma tecla para sair...");
      Console.ReadKey();
    }
  }
}

Ao executar este código C# nós teremos o seguinte resultado:

O diretório existe.


Nossas 20 dicas & truques de programação mais populares

Você também poderá gostar das dicas e truques de programação abaixo

Nossas 20 dicas & truques de programação mais recentes

Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site

Últimos Exercícios Resolvidos

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser. Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 32,90

Planilha Web - Planilhas e Calculadoras online para estudantes e profissionais de Engenharia Civil, Engenharia Elétrica e Engenharia Mecânica.


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 33 usuários muito felizes estudando em nosso site.