Você está aqui: Python ::: Python para Engenharia ::: Cálculo Diferencial e Integral |
Como calcular o limite de uma função usando Python e a biblioteca Sympy - Python para EngenhariaQuantidade de visualizações: 4604 vezes |
|
Como calcular o limite de uma função usando Python e a biblioteca Sympy Citando a Wikipédia: Na matemática, o limite de uma função é um conceito fundamental em cálculo e análise sobre o comportamento desta função quando próxima a um valor particular de sua variável independente. Informalmente, diz-se que __$\text{L}__$ é o limite da função __$\text{f(x)}__$ quando __$\text{x}__$ tende a __$\text{p}__$, escreve-se \[ \lim_{x \to p} f(x) = L \] quando __$\text{f(x)}__$ está arbitrariamente próximo de __$\text{L}__$ para todo __$\text{x}__$ suficientemente próximo de __$\text{p}__$. O conceito de limite pode ser estendido para funções de varias variáveis. A biblioteca SymPy da linguagem Python facilita muito o trabalho de se calcular limites. É claro que é sempre uma boa idéia saber calcular o limite de uma função "na mão" mesmo, até para sabermos se nosso código Python está correto. No entanto, em algumas situações, lançar mão da função limit() da SymPy nos poupará um tempo incrível. Dessa forma, a sintáxe para o cálculo do limite na SymPy segue o padrão limit(função, variável, ponto). Então, se quisermos calcular o limite de f(x) com x tendendo a 0, só precisamos fazer limit(f, x, 0). Vamos colocar esse conhecimento em prática então? Veja o seguinte limite: \[ \lim_{x \to 1} 5x^2 + 2x \] Agora observe o código Python completo que calcula e retorna o limite desta função: ----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------
# vamos importar a biblioteca SymPy
from sympy import *
def main():
# vamos definir o símbolo x
x = symbols("x")
# definimos a função
f = (5 * x ** 2) + (2 * x)
# finalmente calculamos o limite
limite = limit(f, x, 1)
# e mostramos o resultado
print("O limite da função é: %f." % limite)
if __name__== "__main__":
main()
Ao executar este código nós teremos o seguinte resultado: O limite da função é: 7.000000. Logo, o limite da função no ponto __$\text{x}__$ = 1 vale 7, em outras palavras, 7 é o valor que __$f(5x^2 + 2x)__$ deveria ter em 1 para ser contínua nesse ponto. Vamos ver mais um exemplo? Observe o seguinte limite: \[ \lim_{x \to 1} \left(\frac{x^2 - 1}{x - 1}\right) \] Aqui temos um situação interessante. Note que temos que fazer uma manipulação algébrica na expressão, fatorando os termos. Porém, mesmo em situações assim o método limit() da Sympy consegue interpretar a expressão simbólica corretamente e nos devolver o limite esperado. Veja o código Python completo: ----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------
# vamos importar a biblioteca SymPy
from sympy import *
def main():
# vamos definir o símbolo x
x = symbols("x")
# definimos a função
f = (x ** 2 - 1) / (x - 1)
# finalmente calculamos o limite
limite = limit(f, x, 1)
# e mostramos o resultado
print("O limite da função é: %f." % limite)
if __name__== "__main__":
main()
Ao executar este código Python nós teremos o seguinte resultado: O limite da função é: 2.000000. |
|
|
Desafios, Exercícios e Algoritmos Resolvidos de Python |
Veja mais Dicas e truques de Python |
Dicas e truques de outras linguagens |
|
JavaScript - Como obter entrada do usuário em seus códigos JavaScript usando a função prompt() do objeto window Portugol - Como calcular o coeficiente angular de uma reta em Portugol dados dois pontos no plano cartesiano |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
|
1º lugar: Java |






