E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser. Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 19,90
C ::: Dicas & Truques ::: Rotinas de Conversão

Como converter uma string em um valor de ponto-flutuante usando a função atof() da linguagem C

Quantidade de visualizações: 9165 vezes
Em algumas situações, pode ser necessário converter uma string em um valor numérico de ponto-flutuante. Para isso podemos usar a função atof().

Esta função recebe uma matriz de caracteres e tenta transformá-la em um valor de ponto-flutuante. Se a conversão não for possível, o valor 0 é retornado. Os sinais "+" e "-", o ponto decimal e uma parte exponencial, representada por "e" ou "E" são válidos na string a ser convertida. Veja um exemplo:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
  // valor de ponto-flutuante em forma de string
  char valor_str[] = "34.5";

  // A linha abaixo causa um comportamento estranho
  //float res = 10 + valor_str;

  // temos que converter a string em um valor de ponto-flutuante válido
  float res = 10 + atof(valor_str);

  printf("O resultado e: %f", res);

  puts("\n");
  system("pause");
  return 0;
}



LISP ::: LISP para Engenharia ::: Geometria Analítica e Álgebra Linear

Como converter Coordenadas Polares para Coordenadas Cartesianas em LISP - LISP para Engenharia

Quantidade de visualizações: 741 vezes
Nesta nossa série de LISP e AutoLISP para Geometria Analítica e Álgebra Linear, mostrarei um código 100% funcional para fazer a conversão entre coordenadas polares e coordenadas cartesianas. Esta operação é muito frequente em computação gráfica e é parte integrante das disciplinas dos cursos de Engenharia (com maior ênfase na Engenharia Civil).

Na matemática, principalmente em Geometria e Trigonometria, o Sistema de Coordenadas Polares é um sistema de coordenadas em duas dimensões no qual cada ponto no plano é determinado por sua distância a partir de um ponto de referência conhecido como raio (r) e um ângulo a partir de uma direção de referência. Este ângulo é normalmente chamado de theta (__$\theta__$). Assim, um ponto em Coordenadas Polares é conhecido por sua posição (r, __$\theta__$).

Já o sistema de Coordenadas no Plano Cartesiano, ou Espaço Cartesiano, é um sistema que define cada ponto em um plano associando-o, unicamente, a um conjuntos de pontos numéricos.

Dessa forma, no plano cartesiano, um ponto é representado pelas coordenadas (x, y), com o x indicando o eixo horizontal (eixo das abscissas) e o y indicando o eixo vertical (eixo das ordenadas). Quando saímos do plano (espaço 2D ou R2) para o espaço (espaço 3D ou R3), temos a inclusão do eixo z (que indica profundidade).

Antes de prosseguirmos, veja uma imagem demonstrando os dois sistemas de coordenadas:



A fórmula para conversão de Coordenadas Polares para Coordenadas Cartesianas é:

x = raio × coseno(__$\theta__$)
y = raio × seno(__$\theta__$)

E aqui está o código LISP completo que recebe as coordenadas polares (r, __$\theta__$) e retorna as coordenadas cartesianas (x, y):

; programa LISP que converte Coordenadas Polares
; em Coordenadas Cartesianas
(let((raio)(theta)(graus)(x)(y))
  ; vamos ler o raio e o ângulo
  (princ "Informe o raio: ")
  (force-output)
  (setq raio (read))
  (princ "Informe o theta: ")
  (force-output)
  (setq theta (read))
  (princ "Theta em graus (1) ou radianos (2): ")
  (force-output)
  (setq graus (read))
  
  ; o theta está em graus?
  (if(eq graus 1)
    (setq theta (* theta (/ pi 180.0)))    
  )
  
  ; fazemos a conversão para coordenadas cartesianas 
  (setq x (* raio (cos theta)))
  (setq y (* raio (sin theta)))
  
  ; exibimos o resultado
  (format t "As Coordenadas Cartesianas são: (x = ~F, y = ~F)"
    x y)
)

Ao executar este código LISP nós teremos o seguinte resultado:

Informe o raio: 1
Informe o theta: 1.57
Theta em graus (1) ou radianos (2): 2
As Coordenadas Cartesianas são: (x = 0,00, y = 1,00)


Java ::: Desafios e Lista de Exercícios Resolvidos ::: Física - Mecânica - Movimento Retilíneo Uniforme (MRU)

Exercícios Resolvidos de Física usando Java - Dois automóveis, A e B, movem-se em movimento uniforme e no mesmo sentido. Suas velocidades escalares têm módulos respectivamente iguais a...

Quantidade de visualizações: 2538 vezes
Pergunta/Tarefa:

Dois automóveis, A e B, movem-se em movimento uniforme e no mesmo sentido. Suas velocidades escalares têm módulos respectivamente iguais a 15 m/s e 10 m/s. No instante t = 0, os automóveis encontram-se nas posições indicadas abaixo:



Determine:

a) o instante em que A alcança B;
b) a que distância da posição inicial de A ocorre o encontro.

Resposta/Solução:

Este é um dos exemplos clássicos que encontramos nos livros de Física Mecânica, nos capítulos dedicados ao Movimento Retilíneo Uniforme (MRU). Em geral, tais exemplos são vistos como parte dos estudos de encontro e ultrapassagem de partículas.

Por se tratar de Movimento Retilíneo Uniforme (MRU), as grandezas envolvidas nesse problema são: posição (deslocamento), velocidade e tempo. Assim, já sabemos de antemão que o veículo B está 100 metros à frente do veículo A. Podemos então começar calculando a posição atual na qual cada um dos veículos se encontra. Isso é feito por meio da Função Horária da Posição ou Deslocamento em Movimento Retilíneo Uniforme - MRU.

Veja o código Java que nos retorna a posição inicial (em metros) dos dois veículos:

package arquivodecodigos;

public class Estudos{
  public static void main(String args[]){
    // valocidade do veículo A
    double vA = 15; // em metros por segundo    
    // valocidade do veículo B
    double vB = 10; // em metros por segundo
    
    // posição inicial dos dois veículos
    double sInicialA = 0;
    double sInicialB = 100;
    
    // tempo inicial em segundos
    double tempo_inicial = 0;
    
    // calcula a posição atual dos dois veículos
    double sA = sInicialA + (vA * tempo_inicial);
    double sB = sInicialB + (vB * tempo_inicial);
    
    // mostra os resultados
    System.out.println("A posição do veículo A é: " + sA + " metros");
    System.out.println("A posição do veículo B é: " + sB + " metros");
  }
} 

Ao executar esta primeira parte do código Java nós teremos o seguinte resultado:

A posição do veículo A é: 0.0 metros
A posição do veículo B é: 100.0 metros

Agora que já temos o código que calcula a posição de cada veículo, já podemos calcular o tempo no qual o veículo A alcança o veículo B. Para isso vamos pensar direito. Se o veículo A vai alcançar o veículo B, então já sabemos que a velocidade do veículo A é maior que a velocidade do veículo B.

Sabemos também que a posição do veículo B é maior que a posição do veículo A. Só temos que aplicar a fórmula do tempo, que é a variação da posição dividida pela variação da velocidade. Veja o código Java que efetua este cálculo:

package arquivodecodigos;

public class Estudos{
  public static void main(String args[]){
    // valocidade do veículo A
    double vA = 15; // em metros por segundo    
    // valocidade do veículo B
    double vB = 10; // em metros por segundo
    
    // posição inicial dos dois veículos
    double sInicialA = 0;
    double sInicialB = 100;
    
    // tempo inicial em segundos
    double tempo_inicial = 0;
    
    // calcula a posição atual dos dois veículos
    double sA = sInicialA + (vA * tempo_inicial);
    double sB = sInicialB + (vB * tempo_inicial);
    
    // calculamos o tempo no qual o veículo A alcança o veículo B
    double tempo = (sB - sA) / (vA - vB);
    
    // mostra os resultados
    System.out.println("A posição do veículo A é: " + sA + " metros");
    System.out.println("A posição do veículo B é: " + sB + " metros");
    System.out.println("O veículo A alcança o veículo B em " + tempo + 
      " segundos");
  }
} 

Ao executar esta modificação do código Java nós teremos o seguinte resultado:

A posição do veículo A é: 0.0 metros
A posição do veículo B é: 100.0 metros
O veículo A alcança o veículo B em 20.0 segundos

O item b pede para indicarmos a que distância da posição inicial de A ocorre o encontro entre os dois veículos. Agora que já sabemos o tempo do encontro, fica muito fácil. Basta multiplicarmos a velocidade do veículo A pelo tempo do encontro. Veja:

package arquivodecodigos;

public class Estudos{
  public static void main(String args[]){
    // valocidade do veículo A
    double vA = 15; // em metros por segundo    
    // valocidade do veículo B
    double vB = 10; // em metros por segundo
    
    // posição inicial dos dois veículos
    double sInicialA = 0;
    double sInicialB = 100;
    
    // tempo inicial em segundos
    double tempo_inicial = 0;
    
    // calcula a posição atual dos dois veículos
    double sA = sInicialA + (vA * tempo_inicial);
    double sB = sInicialB + (vB * tempo_inicial);
    
    // calculamos o tempo no qual o veículo A alcança o veículo B
    double tempo = (sB - sA) / (vA - vB);
    
    // a que distância da posição inicial de A ocorre o encontro
    double distancia_encontro = vA * tempo;
    
    // mostra os resultados
    System.out.println("A posição do veículo A é: " + sA + " metros");
    System.out.println("A posição do veículo B é: " + sB + " metros");
    System.out.println("O veículo A alcança o veículo B em " + tempo + 
      " segundos");
    System.out.println("O encontro ocorreu a " + distancia_encontro + 
      " metros da distância inicial do veículo A");
  }
} 

Agora o código Java completo nos mostra o seguinte resultado:

A posição do veículo A é: 0.0 metros
A posição do veículo B é: 100.0 metros
O veículo A alcança o veículo B em 20.0 segundos
O encontro ocorreu a 300.0 metros da distância inicial do veículo A

Para demonstrar a importância de se saber calcular a Função Horária da Posição ou Deslocamento em Movimento Retilíneo Uniforme (MRU), experimente indicar que o veículo A saiu da posição 20 metros, e defina a posição inicial do veículo B para 120 metros, de modo que ainda conservem a distância de 100 metros entre eles.

Você verá que o tempo do encontro e a distância do encontro em relação à posição inicial do veículo A continuam os mesmos. Agora experimente mais alterações nas posições iniciais, na distância e também nas velocidades dos dois veículos para entender melhor os conceitos que envolvem o Movimento Retilíneo Uniforme (MRU).


Ruby ::: Dicas & Truques ::: Arrays e Matrix (Vetores e Matrizes)

Como ordenar um array em Ruby usando as funções sort e sort!

Quantidade de visualizações: 12231 vezes
Em várias situações nós precisamos ordenar arrays na linguagem Ruby. Para isso nós podemos usar a função sort, que ordenará os elementos do array em ordem crescente.

Veja o código Ruby a seguir:

=begin
  Este trecho de código mostra como ordenar
  um array de inteiros usando o método sort
  da classe Array.  
=end

# define um array de inteiros
valores = [10, 3, 56, 100, 34, 0, 4]

# exibe os valores na ordem original
puts "Ordem original:"
for valor in valores
  print valor.to_s + " "
end

# array ordenado
puts "\n\nOrdenado do menor para o maior:"
valores = valores.sort # ordena o array
for valor in valores
  print valor.to_s + " "
end

Ao executar este código Ruby nós teremos o seguinte resultado:

Ordem original:
10 3 56 100 34 0 4

Ordenado do menor para o maior:
0 3 4 10 34 56 100

Se quisermos que a ordenação seja feita no array original, sem criar uma cópia, podemos usar a função sort!. Veja:

=begin
  Este trecho de código mostra como ordenar
  um array de inteiros usando o método sort
  da classe Array.  
=end

# define um array de inteiros
valores = [10, 3, 56, 100, 34, 0, 4]

# exibe os valores na ordem original
puts "Ordem original:"
for valor in valores
  print valor.to_s + " "
end

# array ordenado
puts "\n\nOrdenado do menor para o maior:"
valores.sort! # ordena o array
for valor in valores
  print valor.to_s + " "
end



Java ::: Fundamentos da Linguagem ::: Estruturas de Controle

Tutorial de Java - Como usar a instrução condicional if e if...else do Java

Quantidade de visualizações: 54139 vezes
Instruções if e if...else permitem executar trechos de códigos baseado em condições. Veja um exemplo:

public class Estudos{
  public static void main(String args[]){
    int valor = 5;
    
    if(valor > 3)
      System.out.println("Valor maior que 3");
  }
}

Neste programa, a instrução

System.out.println("Valor maior que 3");

será executada somente se o teste (valor > 3) for verdadeiro. Observe que a expressão de teste deverá sempre ser do tipo boolean (true ou false).

Neste exemplo temos apenas uma instrução a ser executada. Isso dispensa o uso das chaves ao redor do bloco de códigos. Se o bloco contiver mais de uma instrução, as chaves são necessárias. Veja:

public class Estudos{
  public static void main(String args[]){
    int valor = 5;
    
    if(valor > 3){
      System.out.println("Valor maior que 3");
      System.out.println("O valor é: " + valor);
    }
  }
} 

A instrução if...else (se...senão) é usada quando queremos fornecer um caminho alternativo ao código. Veja:

public class Estudos{
  public static void main(String args[]){
    int valor = 1;
    
    if(valor > 3)
      System.out.println("Valor maior que 3");
    else
      System.out.println("Valor menor que 3");
  }
}

Você pode ainda usar if...else if...else (se...senão se...senão). Veja:

public class Estudos{
  public static void main(String args[]){
    int valor = 3;
    
    if(valor > 3)
      System.out.println("Valor maior que 3");
    else if(valor < 3)
      System.out.println("Valor menor que 3");
    else
      System.out.println("Valor é igual a 3");
  }
} 



C++ ::: Desafios e Lista de Exercícios Resolvidos ::: Recursão (Recursividade)

Exercício Resolvido de C++ - Um método recursivo que calcula o número de Fibonacci para um dado índice

Quantidade de visualizações: 741 vezes
Pergunta/Tarefa:

Observe a série de números Fibonacci abaixo:

Série:  0  1  1  2  3  5  8  13  21  34  55  89 
Índice: 0  1  2  3  4  5  6   7   8   9  10  11 
Cada número da série é a soma dos dois números anteriores. A linha de baixo reflete o índice do número. Assim, quando falamos "O quinto número de Fibonacci", nós estamos nos referindo ao índice 4, ou seja, o valor 3.

Este algoritmo consiste em, dado um determinado índice, retornar o número de Fibonacci correspondente. Recursivamente, o cálculo pode ser feito da seguinte forma:

fib(0) = 0;
fib(1) = 1;
fib(indice) = fib(indice - 2) + fib(indice - 1); sendo o indice >= 2

Os casos nos quais os índices são 0 ou 1 são os casos bases (aqueles que indicam que a recursividade deve parar). Seu método deverá possuir a seguinte assinatura:

int fibonacci(int indice){
  // sua implementação aqui
}
Sua saída deverá ser parecida com:
Informe o índice: 6
O número de Fibonacci no índice informado é: 8

Resposta/Solução:

Veja a resolução comentada deste exercício usando C++:

#include <string>
#include <iostream>

using namespace std;

// assinatura da função recursiva
int fibonacci(int indice);

int main(int argc, char *argv[]){
  // variáveis usadas na resolução do problema
  int indice;
  
  // vamos solicitar o índice do número de Fibonacci
  cout << "Informe o índice: ";
  // lê o índice
  cin >> indice;
    
  // calcula o número de Fibonacci no índice informado
  cout << "O número de Fibonacci no índice informado é: " <<
    fibonacci(indice) << endl;
  
  system("PAUSE"); // pausa o programa
  return EXIT_SUCCESS; 
}

// função recursiva que o número de Fibonacci em um determinado índice
int fibonacci(int indice){
  if(indice == 0){ // caso base; interrompe a recursividade
    return 0;
  }
  else if(indice == 1){ // caso base; interrompe a recursividade
    return 1;
  }
  else{ // efetua uma nova chamada recursiva
    return fibonacci(indice - 1) + fibonacci(indice - 2);
  }
}



VisuAlg ::: Desafios e Lista de Exercícios Resolvidos ::: VisuAlg Básico

Exercícios Resolvidos de VisuAlg - Como calcular salário líquido em VisuAlg - Calculando o salário líquido de um professor

Quantidade de visualizações: 995 vezes
Pergunta/Tarefa:

Escreva um algoritmo VisuAlg que calcule o salário líquido de um professor. Seu programa deverá solicitar que o usuário informe o valor da hora aula (como real), o número de horas trabalhadas no mês (como inteiro) e o percentual de desconto do INSS (como real). Em seguida mostre o salário líquido.

Sua saída deverá ser parecida com:

Informe o valor da hora aula: 28
Informe o número de horas trabalhadas no mês: 12
Informe o percentual de desconto do INSS: 8
Salário Bruto: R$ 336,00
Total de Descontos: R$ 26,88
Salário Líquido: R$ 309,12
Resposta/Solução:

Veja a resolução comentada deste exercício usando VisuAlg:

Algoritmo "Cálculo de Salário Bruto e Líquido em VisuAlg"

Var
  // variáveis usadas para resolver o problema
  valor_hora_aula: real
  horas_trabalhadas: inteiro
  percentual_desconto_inss: real
  salario_bruto: real
  salario_liquido: real
  total_desconto: real

Inicio
  // vamos ler o valor do hora aula
  escreva("Informe o valor da hora aula: ")
  leia(valor_hora_aula)

  // vamos ler o número de horas trabalhadas no mês
  escreva("Informe o número de horas trabalhadas no mês: ")
  leia(horas_trabalhadas)

  // vamos ler o percentual de desconto do INSS
  escreva("Informe o percentual de desconto do INSS: ")
  leia(percentual_desconto_inss)

  // vamos calcular o salário bruto
  salario_bruto <- valor_hora_aula * horas_trabalhadas

  // agora calculamos o total do desconto
  total_desconto <- (percentual_desconto_inss / 100) * salario_bruto

  // finalmente calculamos o salário líquido
  salario_liquido <- salario_bruto - total_desconto

  // mostramos o resultado
  escreval("Salário Bruto: R$ ", salario_bruto:2:2)
  escreval("Total de Descontos: R$ ", total_desconto:2:2)
  escreval("Salário Líquido: R$ ", salario_liquido:2:2)

Fimalgoritmo



PHP ::: Fundamentos da Linguagem ::: Passos Iniciais

PHP para iniciantes - Quais as diferenças entre include e require do PHP?

Quantidade de visualizações: 13905 vezes
A principal diferença entre as diretivas require() e include() do PHP é que, se usarmos require() para incluir um arquivo que não pode ser incluído (talvez o arquivo não exista), um erro fatal será gerado e a execução de código na página será imediatamente suspenso. Um exemplo de tal mensagem de erro é:

Warning: require(inexistente.php) [function.require]: 
failed to open stream: No such file or directory in 
/public_html/testes.php on line 3

Fatal error: require() [function.require]: Failed 
opening required 'inexistente.php' 
(include_path='.:/usr/share/pear') in 
/public_html/testes.php on line 3


Veja que geralmente recebemos um Warning e depois um Fatal error. Experimente criar o arquivo "inexistente.php" e as mensagens de advertência e erro desaparecerão.

Se usarmos include() e o arquivo de inclusão não puder ser localizado, teremos uma advertência mas a execução do código na página não será interrompida:

Warning: include(inexistente.php) [function.include]: 
failed to open stream: No such file or directory 
in /public_html/testes.php on line 3

Warning: include() [function.include]: Failed 
opening 'inexistente.php' for inclusion 
(include_path='.:/usr/share/pear') in 
/public_html/testes.php on line 3


O uso de require() ou include() vai depender da situação: require() é melhor empregado para carregar arquivos que são essenciais para o restante da página, por exemplo, se você tiver um site usando banco de dados, então usar require() para incluir o arquivo contendo o login e senha do banco de dados é muito melhor que usar include(). Se usarmos include() nesta situação, poderemos terminar gerando mais erros e advertências que o pretendido.

include() deve ser usado quando o arquivo a ser incluído não é essencial para o correto funcionamento da página. Um exemplo disso é quando incluímos um arquivo de topo ou rodapé de páginas.


Java ::: Fundamentos da Linguagem ::: Variáveis e Constantes

Curso Completo de Java - Como usar constantes em Java

Quantidade de visualizações: 15558 vezes
O valor de uma variável pode ser alterado durante a execução do programa. Mas, o valor de uma constante não é alterado jamais. Escritas sempre com letras maiúsculas, as constantes trazem algumas vantagens, entre elas o fato de que nomes descritivos para constantes podem tornar o programa mais fácil de ser lido. Além disso, o valor representado pela constante pode ser alterado em apenas um lugar do código fonte.

Veja abaixo como declarar e usar uma constante em Java:

// Este exemplo mostra como declarar e usar
// uma constante em Java

public class Estudos{
  final static int IDENT_PROGRAMA = 47; 
  
  public static void main(String args[]){
    System.out.println("O valor da constante " +
      "é " + IDENT_PROGRAMA);
    System.exit(0);
  }
}

Observe que usamos o modificador final para marcar um identificador como constante. Veja agora o que acontece quando tentamos alterar o valor de uma constante em tempo de compilação:

// vamos tentar alterar o valor da constante
IDENT_PROGRAMA = 29;

O compilador emitirá a seguinte mensagem de erro:

Estudos.java:9: cannot assign a value to final 
variable IDENT_PROGRAMA
  IDENT_PROGRAMA = 29;
  ^
1 error



C++ ::: Desafios e Lista de Exercícios Resolvidos ::: Métodos, Procedimentos e Funções

Exercício Resolvido de C++ - Escreva uma função C++ que recebe três números inteiros e retorna o menor deles

Quantidade de visualizações: 531 vezes
Pergunta/Tarefa:

Escreva um programa C++ que contenha uma função, método ou procedimento que recebe três números inteiros e retorne o menor deles como um inteiro. Seu método não deve produzir nenhuma saída, apenas retornar o menor número entre os três argumentos fornecidos.

Sua saída deverá ser parecida com:

Informe o primeiro número: 8
Informe o segundo número: 10
Informe o terceiro número: 7
O menor número é: 7
Resposta/Solução:

Veja a resolução comentada deste exercício em C++:

#include <iostream>
#include <algorithm>

using namespace std;

// função que recebe três números e retorna o menor deles
int menor(int a, int b, int c){
  return min(min(a, b), c);
}

// função principal do programa
int main(int argc, char *argv[]){
  int n1, n2, n3, menor_numero;
	
  // vamos pedir para o usuário informar três
  // números inteiros
  cout << "Informe o primeiro número: ";
  cin >> n1;
  cout << "Informe o segundo número: ";
  cin >> n2;
  cout << "Informe o terceiro número: ";
  cin >> n3;
    
  // agora vamos calcular o menor número
  menor_numero = menor(n1, n2, n3);
    
  // e mostramos o resultado
  cout << "O menor numero é: " << menor_numero << endl;
    
  cout << "\n" << endl;
  system("PAUSE"); // pausa o programa
  return EXIT_SUCCESS;
}


Carregar Publicações Anteriores


Nossas 20 dicas & truques de programação mais populares

Você também poderá gostar das dicas e truques de programação abaixo

Nossas 20 dicas & truques de programação mais recentes

Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site

Últimos Exercícios Resolvidos

E-Books em PDF

E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 35 usuários muito felizes estudando em nosso site.