![]() |
|
||||
Planilha Web - Planilhas e Calculadoras online para estudantes e profissionais de Engenharia Civil, Engenharia Elétrica e Engenharia Mecânica. |
|||||
Você está aqui: VB.NET ::: Dicas & Truques ::: Matemática e Estatística |
Como resolver uma equação do segundo grau em VB.NET - Como calcular Bhaskara em VB.NETQuantidade de visualizações: 724 vezes |
|
Como resolver uma equação do 2º grau usando VB.NET Nesta dica mostrarei como encontrar as raízes de uma equação quadrática, ou seja, uma equação do 2º usando a linguagem VB.NET. Definimos como equação do 2º grau ou equações quadráticas qualquer equação do tipo ax² + bx + c = 0 em que a, b e c são números reais e a ≠ 0. Ela recebe esse nome porque, no primeiro membro da igualdade, há um polinômio de grau dois com uma única incógnita. Note que, dos coeficientes a, b e c, somente o a é diferente de zero, pois, caso ele fosse igual a zero, o termo ax² seria igual a zero, logo a equação se tornaria uma equação do primeiro grau: bx + c = 0. Independentemente da ordem da equação, o coeficiente a sempre acompanha o termo x², o coeficiente b sempre acompanha o termo x, e o coeficiente c é sempre o termo independente. Como resolver uma equação do 2º grau Conhecemos como soluções ou raízes da equação ax² + bx + c = 0 os valores de x que fazem com que essa equação seja verdadeira. Uma equação do 2º grau pode ter no máximo dois números reais que sejam raízes dela. Para resolver equações do 2º grau completas, existem dois métodos mais comuns: a) Fórmula de Bhaskara; b) Soma e produto. O primeiro método é bastante mecânico, o que faz com que muitos o prefiram. Já para utilizar o segundo, é necessário o conhecimento de múltiplos e divisores. Além disso, quando as soluções da equação são números quebrados, soma e produto não é uma alternativa boa. Como resolver uma equação do 2º grau usando Bhaskara Como nosso código VB.NET vai resolver a equação quadrática usando a Fórmula de Bhaskara, o primeiro passo é encontrar o determinante. Veja: \[\Delta =b^2-4ac\] Nem sempre a equação possui solução real. O valor do determinante é que nos indica isso, existindo três possibilidades: a) Se determinante > 0, então a equação possui duas soluções reais. b) Se determinante = 0, então a equação possui uma única solução real. c) Se determinante < 0, então a equação não possui solução real. Encontrado o determinante, só precisamos substituir os valores, incluindo o determinante, na Fórmula de Bhaskara: \[x = \dfrac{- b\pm\sqrt{b^2- 4ac}}{2a}\] Vamos agora ao código VB.NET. Nossa aplicação vai pedir para o usuário informar os valores dos três coeficientes a, b e c e, em seguida, vai apresentar as raizes da equação: ----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------
Imports System
Module Program
Sub Main(args As String())
' os coeficientes
Dim a, b, c As Double
' as duas raizes, a imaginaria e o discriminante
Dim raiz1, raiz2, imaginaria, discriminante As Double
' vamos pedir para o usuário informar os valores dos coeficientes
Console.Write("Valor do coeficiente a: ")
a = Double.Parse(Console.ReadLine())
Console.Write("Valor do coeficiente b: ")
b = Double.Parse(Console.ReadLine())
Console.Write("Valor do coeficiente c: ")
c = Double.Parse(Console.ReadLine())
' vamos calcular o discriminante
discriminante = (b * b) - (4 * a * c)
' a equação possui duas soluções reais?
If discriminante > 0 Then
raiz1 = (-b + Math.Sqrt(discriminante)) / (2 * a)
raiz2 = (-b - Math.Sqrt(discriminante)) / (2 * a)
Console.Write("Existem duas raizes: x1 = " & raiz1 _
& " e x2 = " & raiz2)
ElseIf discriminante = 0 Then
' a equação possui uma única solução real?
raiz1 = raiz2 = -b / (2 * a)
Console.Write("Existem duas raizes iguais: x1 = " _
& raiz1 & " e x2 = " & raiz2)
ElseIf discriminante < 0 Then
' a equação não possui solução real?
raiz1 = raiz2 = -b / (2 * a)
imaginaria = Math.Sqrt(-discriminante) / (2 * a)
Console.Write("Existem duas raízes complexas: x1 = " &
raiz1 & " + " & imaginaria & " e x2 = " & raiz2 _
& " - " & imaginaria)
End If
Console.WriteLine(vbCrLf & "Pressione qualquer tecla para sair...")
' pausa o programa
Console.ReadKey()
End Sub
End Module
Ao executar este código VB.NET nós teremos o seguinte resultado: Valor do coeficiente a: 1 Valor do coeficiente b: 2 Valor do coeficiente c: -3 Existem duas raizes: x1 = 1 e x2 = -3 |
|
|
Desafios, Exercícios e Algoritmos Resolvidos de VB.NET |
Veja mais Dicas e truques de VB.NET |
Dicas e truques de outras linguagens |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
|
1º lugar: Java |





