Java ::: Dicas & Truques ::: Threads

Threads em Java - Como usar a interface Runnable da Java API em suas aplicações

Quantidade de visualizações: 17897 vezes
A interface pública Runnable deve ser implementada em nossas classes quando queremos que instâncias destas possam ser executadas por uma thread. Esta interface está no pacote java.lang e entre as classes que a implementam podemos citar AsyncBoxView.ChildState, FutureTask, RenderableImageProducer, Thread e TimerTask.

Esta interface apresenta apenas um método, a saber:

public void run();
Assim, uma classe que implementa Runnable deverá redefinir este método, sem argumentos, e fornecer a funcionalidade desejada.

Este interface foi idealizada para fornecer um protocolo comum para objetos que têm como objetivo executar determinadas porções de código enquanto ativos. Por exemplo, Runnable é implementada pela classe Thread. Estar ativa significa que uma thread foi iniciada e ainda não finalizou sua tarefa.

Além disso, a interface Runnable fornece meios para que uma classe esteja ativa sem fazer sub-classe de Thread. Uma classe que implementa Runnable pode ser executada sem fazer sub-classe de Thread criando-se uma instância de Thread e fornecendo tal classe como alvo. Na maioria dos casos, a interface Runnable deve ser usada se estivermos planejando apenas sobrescrever o método run() e nenhum outro método da classe Thread. Isso é importante, uma vez que não devemos extender classes a menos que tenhamos a intenção de modificar ou extender o comportamento fundamental da classe.

Veja uma aplicação na qual temos uma classe que implementa Runnable. Note como criamos instâncias de Thread e fornecemos nossa classe como alvo:

// criamos uma classe que servirá como thread
class MinhaThread implements Runnable{
  private String nome;  

  public MinhaThread(String nome){
    this.nome = nome;
  }   

  public void run(){
    for(int i = 1; i <= 20; i++){
      System.out.println(nome + ": " + i);
    }
  }
}

public class Estudos{
  public static void main(String[] args){
    // vamos criar duas threads
    MinhaThread mt1 = new MinhaThread("Thread 1");
    Thread t1 = new Thread(mt1);
    t1.start();    

    MinhaThread mt2 = new MinhaThread("Thread 2");
    Thread t2 = new Thread(mt2);
    t2.start();

    System.exit(0);
  }
}



LISP ::: Dicas & Truques ::: Matemática e Estatística

Como calcular MDC em Lisp usando a função GCD

Quantidade de visualizações: 864 vezes
Atualmente a definição de Máximo Divisor Comum (MDC) pode ser assim formalizada:

Sejam a, b e c números inteiros não nulos, dizemos que c é um divisor comum de a e b se c divide a (escrevemos c|a) e c divide b (c|b). Chamaremos D(a,b) o conjunto de todos os divisores comum de a e b.

Podemos calcular o Máximo Divisor Comum na linguagem Common Lisp usando a função GCD. Esta função aceita um número ilimitado de valores inteiros e retorna seu Máximo Divisor Comum.

Veja um trecho de código Common Lisp no qual pedimos para o usuário informar dois números inteiros e, em seguida, fazemos uso da função GCD para retornar o MDC:

; variáveis que vamos usar no programa
(let ((num1)(num2)(mdc))
  ; Vamos ler o primeiro número
  (princ "Informe o primeiro número: ")
  ; talvez o seu compilador não precise disso
  (force-output)
  ; atribui o valor lido à variável num1
  (setq num1 (read))
  
  ; Vamos ler o segundo número
  (princ "Informe o segundo número: ")
  ; talvez o seu compilador não precise disso
  (force-output)
  ; atribui o valor lido à variável num2
  (setq num2 (read))
  
  ; Vamos obter o MDC dos dois números informados
  (setq mdc (gcd num1 num2))
  
  ; E mostramos o resultado
  (format t "O Máximo Divisor Comum é: ~D" mdc)
)

Ao executarmos este código Common Lisp nós teremos o seguinte resultado:

Informe o primeiro número: 9
Informe o segundo número: 12
O Máximo Divisor Comum é: 3


JavaScript ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular a equação reduzida da reta em JavaScript dados dois pontos pertencentes à reta

Quantidade de visualizações: 795 vezes
Nesta dica de JavaScript veremos como calcular a equação reduzida da reta quando temos dois pontos pertencentes à esta reta. Não, nessa dica não vamos calcular a equação geral da reta, apenas a equação reduzida. Em outras dicas do site você encontra como como isso pode ser feito.

Para relembrar: a equação reduzida da reta é y = mx + n, em que x e y são, respectivamente, a variável independente e a variável dependente; m é o coeficiente angular, e n é o coeficiente linear. Além disso, m e n são números reais. Com a equação reduzida da reta, é possível calcular quais são os pontos que pertencem a essa reta e quais não pertencem.

Vamos começar então analisando a seguinte figura, na qual temos dois pontos que pertencem à uma reta:



Note que a reta da figura passa pelos pontos A(5, 5) e B(9, 2). Então, uma vez que já temos os dois pontos, já podemos calcular a equação reduzida da reta. Veja o código JavaScript completo para esta tarefa:

<!doctype html>
<html>
<head>
  <title>Equação da Reta em JavaScript</title>
</head>
<body>

<script type="text/javascript">
  // vamos ler as coordenadas do primeiro ponto
  var x1 = parseFloat(
    window.prompt("Coordenada x do primeiro ponto: "));
  var y1 = parseFloat(
    window.prompt("Coordenada y do primeiro ponto: "));	
  
  // vamos ler as coordenadas do segundo ponto
  var x2 = parseFloat(
    window.prompt("Coordenada x do primeiro ponto: "));
  var y2 = parseFloat(
    window.prompt("Coordenada y do primeiro ponto: "));
    
  var sinal = "+";
  // vamos calcular o coeficiente angular da reta
  var m = (y2 - y1) / (x2 - x1);
  // vamos calcular o coeficiente linear
  var n = y1 - (m * x1);
 
  // coeficiente linear menor que zero? O sinal será negativo
  if (n < 0){
    sinal = "-";
    n = n * -1;
  }
  
  // mostra a equação reduzida da reta
  document.write("Equação reduzida: y = " + m + "x" 
    + " " + sinal + " " + n);	
</script>
  
</body>
</html>

Ao executar este código JavaScript nós teremos o seguinte resultado:

Coordenada x do primeiro ponto: 5
Coordenada y do primeiro ponto: 5
Coordenada x do segundo ponto: 9
Coordenada y do segundo ponto: 2
Equação reduzida: y = -0,75x + 8,75

Para testarmos se nossa equação reduzida da reta está realmente correta, considere o valor 3 para o eixo x da imagem acima. Ao efetuarmos o cálculo:

>> y = (-0.75 * 3) + 8.75
y = 6.5000

temos o valor 6.5 para o eixo y, o que faz com que o novo ponto caia exatamente em cima da reta considerada na imagem.


C# ::: Dicas & Truques ::: Arquivos e Diretórios

Como usar a classe FileSystemWatcher em seus programas C#

Quantidade de visualizações: 8801 vezes
Podemos usar objetos da classe FileSystemWatcher quando queremos monitorar mudanças em um determinado diretório do sistema. Estas alterações podem ser observadas em arquivos e subdiretórios do diretório especificado. Usando objetos desta classe nós podemos monitorar modificações em arquivos no computador local, em um drive na rede ou em um computador remoto.

Veja a posição desta classe na hierarquia de classes da plataforma .NET:

System.Object
  System.MarshalByRefObject
    System.ComponentModel.Component
      System.IO.FileSystemWatcher


Para adicionar um componente FileSystemWatcher em sua aplicação C# basta localizá-lo na seção Components da Toolbox. Em seguida clique no mesmo e arraste-o para o formulário. Para definir o diretório a ser monitorado, clique no componente, acesse suas propriedades e defina o caminho do diretório na propriedade Path. Um exemplo de diretório poderia ser "C:\arquivo de codigos".

Neste exemplo veremos como detectar alterações nos arquivos e sub-diretórios. Desta forma, vá nos eventos do componente FileSystemWatcher e insira o código abaixo para o evento Changed:

private void fileSystemWatcher1_Changed(object sender, 
  FileSystemEventArgs e){
  
  // vamos verificar o que foi modificado neste diretório
  textBox1.AppendText("Arquivo: " + e.FullPath + " sofreu alterações: " +
    e.ChangeType + Environment.NewLine);
}

Execute a aplicação e experimente criar um arquivo txt no diretório "C:\arquivo de códigos" e modificar seu conteúdo várias vezes. Volte à aplicação e a caixa de texto terá um conteúdo parecido com:

Arquivo: C:\arquivo de codigos\dados2.txt sofreu 
alterações: Changed
Arquivo: C:\arquivo de codigos\dados2.txt sofreu 
alterações: Changed



Java ::: Dicas & Truques ::: Strings e Caracteres

Como testar se uma string Java está toda em letras maiúsculas ou minúsculas usando as funções Character.isWhitespace() e Character.isUpperCase()

Quantidade de visualizações: 280 vezes
Nesta dica mostrarei como podemos combinar um laço e as funções Character.isWhitespace() e Character.isUpperCase() para testar se uma palavra, frase ou texto está toda em letras maiúsculas em Java.

Veja o código completo para o exemplo:

package estudos;

public class Estudos {

  public static void main(String[] args) {
    // Este exemplo mostra como verificar se uma
    // string está toda em letras maiúsculas
    String frase = "PROGRAMANDO EM JAVA";
    boolean maiusculas = true;

    for (int i = 0; i < frase.length(); i++) {
      Character caractere = frase.charAt(i);
      if (Character.isWhitespace(caractere)) {
        continue;
      }
      if (!Character.isUpperCase(caractere)) {
        maiusculas = false;
        break;
      }
    }

    if (maiusculas) {
      System.out.println("A string esta toda em letras maiusculas");
    }
    else{
      System.out.println("A string NAO esta toda em letras maiusculas");
    }
  }
}

Ao executar este código Java nós teremos o seguinte resultado:

A string está toda em letras maiúsculas


JavaScript ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como calcular o cateto oposto dadas as medidas da hipotenusa e do cateto adjascente em JavaScript

Quantidade de visualizações: 1529 vezes
Todos estamos acostumados com o Teorema de Pitágoras, que diz que "o quadrado da hipotenusa é igual à soma dos quadrados dos catetos". Baseado nessa informação, fica fácil retornar a medida do cateto oposto quando temos as medidas da hipotenusa e do cateto adjascente. Isso, claro, via programação em linguagem JavaScript.

Comece observando a imagem a seguir:



Veja que, nessa imagem, eu já coloquei os comprimentos da hipotenusa, do cateto oposto e do cateto adjascente. Para facilitar a conferência dos cálculos, eu coloquei também os ângulos theta (que alguns livros chamam de alfa) e beta já devidamente calculados. A medida da hipotenusa é, sem arredondamentos, 36.056 metros.

Então, sabendo que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos (Teorema de Pitógoras):

\[c^2 = a^2 + b^2\]

Tudo que temos que fazer é mudar a fórmula para:

\[a^2 = c^2 - b^2\]

Veja que agora o quadrado do cateto oposto é igual ao quadrado da hipotenusa menos o quadrado do cateto adjascente. Não se esqueça de que a hipotenusa é o maior lado do triângulo retângulo.

Veja agora como esse cálculo é feito em linguagem JavaScript:

<html>
<head>
  <title>Estudos JavaScript</title>
</head>
 
<body>

<script type="text/javascript">
  var c = 36.056; // medida da hipotenusa
  var b = 30; // medida do cateto adjascente
  
  // agora vamos calcular o comprimento da cateto oposto
  var a = Math.sqrt(Math.pow(c, 2) - Math.pow(b, 2));
 
  // e mostramos o resultado
  document.writeln("A medida do cateto oposto é: " + a);
</script>

</body>
</html>

Ao executar este código JavaScript nós teremos o seguinte resultado:

A medida do cateto oposto é: 20.00087838071118

Como podemos ver, o resultado retornado com o código JavaScript confere com os valores da imagem apresentada.


Java ::: Coleções (Collections) ::: Set (Conjunto)

Java Collections - Como usar a interface Set em seus códigos Java

Quantidade de visualizações: 5154 vezes
A interface Set estende a interface Collection mas não adiciona novos métodos ou constantes. Em vez disso, esta interface define que uma instância de Set não contenha elementos duplicados. Esta responsabilidade é transferida para as classes que implementam a interface.

A classe abstrata AbstractSet é uma classe de conveniência que herda da classe também abstrata AbstractCollection e implementa a interface Set. A classe AbstractSet fornece implementações concretas para os métodos equals() e hashCode(). Estes métodos permitem a funcionalidade da não permissão de elementos duplicados nos conjuntos.

As classes concretas mais conhecidas da interface Set são:

HashSet - Esta classe é implementada em cima de uma tabela hash, ou seja, um array (matriz) na qual os elementos são armazenados em posições calculadas de acordo com o seu conteúdo. Uma característica interessante de HashSet é que os elementos raramente são retornados na mesma ordem na qual foram inseridos.

LinkedHashSet - Esta classe estende a classe HashSet com uma implementação de lista ligada (linked list) que permite a ordenação dos elementos no conjunto.

TreeSet - Esta classe é uma classe concreta que implementa a interface SortedSet. A interface SortedSet é uma sub-interface de Set que garante que os elementos no conjunto estejam ordenados. Além disso, esta interface fornece os métodos first() e last() para acessar o primeiro e o último elemento do conjunto. Há ainda os métodos headSet(toElement) e tailSet(fromElement) para retornar uma faixa do conjunto cujos elementos sejam "menores" que toElement e "maiores" que fromElement.

Seja qual for a implementação de Set que você queira usar, é sempre uma boa idéia codificar em cima da interface. Isso facilita a troca de HashSet por TreeSet ou vice-versa sem grandes modificações no seu código.

Veja um exemplo no qual usamos a classe concreta HashSet para representar um conjunto de cinco strings únicas:

package estudos;

import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;

public class Estudos{
  public static void main(String[] args) {
    // vamos criar uma instância da classe HashSet
    Set<String> conjunto = new HashSet<>();
    
    // vamos inserir cinco elementos no Set
    conjunto.add("Açucar");
    conjunto.add("Macarrão");
    conjunto.add("Feijão");
    conjunto.add("Carne");
    conjunto.add("Maionese");
    
    // vamos exibir os elementos inseridos
    Iterator iterator = conjunto.iterator();
    while(iterator.hasNext()){
      System.out.println(iterator.next());
    }
  }
}


Ao executar este trecho de código teremos um resultado parecido com:

Macarrão
Feijão
Carne
Açucar
Maionese

Note que raramente os elementos serão exibidos na ordem na qual eles foram inseridos. Experimente agora trocar a linha:

Set<String> conjunto = new HashSet<>();

por

Set<String> conjunto = new LinkedHashSet<>();

Execute o código novamente e verá que agora os elementos são exibidos na mesma ordem que foram inseridos.


C ::: Desafios e Lista de Exercícios Resolvidos ::: Estruturas de Controle

Exercício Resolvido de C - Como testar se um ano é bissexto em C - Um programa que lê um ano com quatro dígitos e informa se ele é bissexto ou não

Quantidade de visualizações: 1084 vezes
Pergunta/Tarefa:

Chama-se ano bissexto o ano ao qual é acrescentado um dia extra, ficando ele com 366 dias, um dia a mais do que os anos normais de 365 dias, ocorrendo a cada quatro anos (exceto anos múltiplos de 100 que não são múltiplos de 400). Isto é feito com o objetivo de manter o calendário anual ajustado com a translação da Terra e com os eventos sazonais relacionados às estações do ano. O último ano bissexto foi 2012 e o próximo será 2016.

Um ano é bissexto se ele for divisível por 4 mas não por 100, ou se for divisível por 400.

Escreva um programa C que pede ao usuário um ano com quatro dígitos e informa se ele é bissexto ou não.

Sua saída deverá ser parecida com:

Informe o ano: 2024
O ano informado é bissexto.
Resposta/Solução:

Veja a resolução comentada deste exercício usando C console:

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
  
int main(int argc, char *argv[]){
  int ano;
	
  setlocale(LC_ALL,""); // para acentos do português
  
  // vamos solicitar que o usuário informe um ano
  printf("Informe o ano: ");
  scanf("%d", &ano);
	
  // vamos verificar se o ano informado é bissexto
  if(((ano % 4 == 0) && (ano % 100 != 0)) || (ano % 400 == 0)){
    printf("\nO ano informado é bissexto.\n");  
  }
  else{
    printf("\nO ano informado não é bissexto.\n");  
  }
    
  printf("\n\n");
  system("pause");
  return 0;
}



Python ::: Dicas & Truques ::: Strings e Caracteres

Como testar se uma substring está contida no final de uma string em Python usando a função endswith()

Quantidade de visualizações: 9197 vezes
Em várias situações nós precisamos verificar se uma palavra, frase ou texto termina com um determinado texto, ou seja, uma substring. A linguagem Python nos oferece a função endswith(), que possui a seguinte assinatura:

endswith(substring[, start[, end]])


Se o argumento start for especificado, a busca inicia a partir de tal índice. Se o argumento end for especificado, a busca terminará no índice definido.

Dessa forma, a função endswith retorna 1 se a substring estiver contida no final da string. Do contrário, o valor 0 será retornado.

Veja o código completo para o exemplo:

def main():
  frase = "Gosto de programar em Java"
 
  if frase.endswith("Java") == 1:
    print("A frase termina com \"Java\"")
  else:
    print("A frase NÃO termina com \"Java\"")   
 
if __name__== "__main__":
  main()

Ao executarmos este código nós teremos o seguinte resultado:

A frase termina com "Java"


Python ::: Desafios e Lista de Exercícios Resolvidos ::: Python Básico

Exercícios Resolvidos de Python - Como calcular o peso de uma pessoa na Lua usando Python

Quantidade de visualizações: 715 vezes
Pergunta/Tarefa:

Escreva um programa Python que leia o peso de uma pessoa na Terra e retorne o seu peso na Lua. Lembre-se da seguinte fórmula:

\[\text{Peso na Lua} = \frac{\text{Peso na Terra}}{9,81} \times 1,622 \]

Aqui nós estamos definindo a força da gravidade na Terra como 9,81 m/s2 e a força da gravidade na Lua como 1,622 m/s2. Se você quiser calcular o peso de uma pessoa em Marte, por exemplo, basta trocar a força da gravidade na Lua pela força da gravidade em Marte.

Sua saída deverá ser parecida com:

Peso na terra (kg): 70
O peso da pessoa na Lua é: 11.57 kg
Resposta/Solução:

Veja a resolução comentada deste exercício usando Python:

# função principal do programa
def main():
  # vamos ler o peso da pessoa na Terra
  peso_terra = float(input("Peso na terra (kg): "))
  
  # vamos calcular o peso da pessoa na Lua
  peso_lua = (peso_terra / 9.81) * 1.622 
  # arredonda para duas casas decimais
  peso_lua = round(peso_lua, 2)

  # vamos mostrar o resultado
  print("O peso da pessoa na Lua é: {0} kg".format(peso_lua))

if __name__== "__main__":
  main()


Carregar Publicações Anteriores


Nossas 20 dicas & truques de programação mais populares

Você também poderá gostar das dicas e truques de programação abaixo

Nossas 20 dicas & truques de programação mais recentes

Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site

Últimos Exercícios Resolvidos

E-Books em PDF

E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 31 usuários muito felizes estudando em nosso site.