Java ::: Dicas & Truques ::: Strings e Caracteres |
Como testar se duas strings são iguais em Java sem considerar letras maiúsculas e minúsculas usando o método equalsIgnoreCase()Quantidade de visualizações: 290 vezes |
Nesta dica mostrarei como podemos usar o método equalsIgnoreCase() da classe String da linguagem Java para verificar se duas palavras, frases ou textos são iguais desconsiderando letras maiúsculas e minúsculas. Veja o código completo para o exemplo: package estudos; public class Estudos{ public static void main(String[] args){ String s1 = "GOSTO de Java"; String s2 = "gosto de java"; System.out.println("A primeira string é: " + s1); System.out.println("A segunda string é: " + s2); if(s1.equalsIgnoreCase(s2)){ System.out.println("As duas strings sao iguais"); } else{ System.out.println("As duas strings não sao iguais"); } System.exit(0); } } Ao executar este código Java nós teremos o seguinte resultado: A primeira string é: GOSTO de Java A segunda string é: gosto de java As duas strings são iguais |
Java ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como calcular o cateto oposto dadas as medidas da hipotenusa e do cateto adjascente em JavaQuantidade de visualizações: 2158 vezes |
Todos estamos acostumados com o Teorema de Pitágoras, que diz que "o quadrado da hipotenusa é igual à soma dos quadrados dos catetos". Baseado nessa informação, fica fácil retornar a medida do cateto oposto quando temos as medidas da hipotenusa e do cateto adjascente. Isso, claro, via programação em linguagem Java. Comece observando a imagem a seguir: ![]() Veja que, nessa imagem, eu já coloquei os comprimentos da hipotenusa, do cateto oposto e do cateto adjascente. Para facilitar a conferência dos cálculos, eu coloquei também os ângulos theta (que alguns livros chamam de alfa) e beta já devidamente calculados. A medida da hipotenusa é, sem arredondamentos, 36.056 metros. Então, sabendo que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos (Teorema de Pitógoras): \[c^2 = a^2 + b^2\] Tudo que temos que fazer é mudar a fórmula para: \[a^2 = c^2 - b^2\] Veja que agora o quadrado do cateto oposto é igual ao quadrado da hipotenusa menos o quadrado do cateto adjascente. Não se esqueça de que a hipotenusa é o maior lado do triângulo retângulo. Veja agora como esse cálculo é feito em linguagem Java: package arquivodecodigos; public class Estudos{ public static void main(String args[]){ double c = 36.056; // medida da hipotenusa double b = 30; // medida do cateto adjascente // agora vamos calcular a medida da cateto oposto double a = Math.sqrt(Math.pow(c, 2) - Math.pow(b, 2)); // e mostramos o resultado System.out.println("A medida do cateto oposto é: " + a); } } Ao executar este código Java nós teremos o seguinte resultado: A medida do cateto oposto é: 20.00087838071118 Como podemos ver, o resultado retornado com o código Java confere com os valores da imagem apresentada. |
Java ::: Dicas & Truques ::: Imagens e Processamento de Imagens |
Como criar um programa de visualização de imagens em Java - Código fonte completoQuantidade de visualizações: 19588 vezes |
O que temos abaixo é o código completo para uma aplicação Java Swing que permite visualizar imagens JPG, GIF ou PNG. A imagem é selecinada usando um JFileChooser e carregada usando o método read() da classe ImageIO. Veja que usamos também uma classe personalizada de JPanel para exibir a imagem:import java.awt.*; import java.io.*; import java.awt.image.*; import java.awt.event.*; import javax.swing.*; import javax.imageio.*; public class Estudos extends JFrame{ private BufferedImage imagem; AreaImagem areaImagem; public Estudos(){ super("Estudos Java"); Container c = getContentPane(); c.setLayout(new BorderLayout()); JButton btn = new JButton("Carregar Imagem"); btn.addActionListener( new ActionListener(){ public void actionPerformed(ActionEvent e){ JFileChooser fc = new JFileChooser(); int res = fc.showOpenDialog(null); if(res == JFileChooser.APPROVE_OPTION){ File arquivo = fc.getSelectedFile(); imagem = null; try{ imagem = ImageIO.read(arquivo); } catch(IOException exc){ JOptionPane.showMessageDialog(null, "Erro ao carregar a imagem: " + exc.getMessage()); } if(imagem != null){ areaImagem.imagem = imagem; areaImagem.repaint(); } } } } ); c.add(btn, BorderLayout.SOUTH); // Cria a área de exibição da imagem areaImagem = new AreaImagem(); c.add(areaImagem, BorderLayout.CENTER); setSize(400, 300); setVisible(true); } public static void main(String args[]){ Estudos app = new Estudos(); app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); } } // Sub-classe de JPanel para exibir a imagem class AreaImagem extends JPanel{ public BufferedImage imagem; public void paintComponent(Graphics g){ super.paintComponent(g); // desenha a imagem no JPanel g.drawImage(imagem, 0, 0, this); } } |
Java ::: Dicas & Truques ::: Gráficos |
Como desenhar em um JComponent (JLabel, JButton, JPanel, etc) usando o método getGraphics() para obter o contexto de desenhoQuantidade de visualizações: 14067 vezes |
A classe JComponent possui um método chamado getGraphics() que retorna um objeto da classe Graphics que pode ser usado para desenhar na superfície do componente. Desta forma, qualquer componente que herda de JComponent pode ser usado para esta finalidade. Antes de demonstrarmos como isso funciona, tenha em mente que o contexto de desenho de um componente só está disponível após ele ser pintado pela primeira vez. Se tentarmos obter o Graphics antes que o componente tenha sido pintado, corremos o risco de lançar uma exceção NullPointerException. O trecho de código abaixo mostra como desenhar uma linha em um JLabel ao clicar em um botão. Fique atento a este código. Boa parte das dicas vistas nesta seção usam esta abordagem: import java.awt.*; import java.awt.event.*; import javax.swing.*; public class Estudos extends JFrame{ JLabel label; public Estudos() { super("Desenhando em um JLabel"); Container c = getContentPane(); c.setLayout(new BorderLayout()); // Cria um JLabel label = new JLabel(); c.add(label, BorderLayout.CENTER); // Cria um botão JButton btn = new JButton("Desenhar uma linha"); btn.addActionListener( new ActionListener(){ public void actionPerformed(ActionEvent e){ // Desenha uma linha no JLabel Graphics graphics = label.getGraphics(); graphics.drawLine(0, 0, 150, 100); } } ); // Adiciona o botão à janela c.add(btn, BorderLayout.SOUTH); setSize(350, 250); setVisible(true); } public static void main(String args[]){ Estudos app = new Estudos(); app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); } } Há algo de interessante neste código. Se você maximizar, minimizar ou redimensionar a janela verá que o desenho é apagado. Isso acontece porque todas as vezes que a janela sofre alguma alteração, ela é pintada novamente, juntamente com seus componentes filhos. Se você deseja que o desenho seja feito automaticamente novamente, é melhor fazer uma sub-classe do componente desejado e sobrescrever seu método paintComponent(). Nesta mesma seção você encontrará exemplos de como fazer isso. |
Java ::: Fundamentos da Linguagem ::: Variáveis e Constantes |
Java para iniciantes - Como usar os diferentes tipos de variáveis em JavaQuantidade de visualizações: 17463 vezes |
Na linguagem de programação Java podemos encontrar diferentes tipos de variáveis. Veja a lista e uma descrição detalhada de cada um destes tipos: Variáveis de instância (Instance Variables) - Estas variáveis são não-estáticas, ou seja, declaradas sem o modificador static. Variáveis de instância são assim chamadas porque seus valores são únicos para cada instância da classe. Assim, a variável nomeCliente pode armazenar valores diferentes para cada cópia da classe Cliente. Variáveis de classes - Estas variáveis são declaradas com o modificador static. Isso informa ao compilador que há exatamente uma única cópia desta variável, independente do número de instâncias da classe. Um bom exemplo de tal variável é quantCliente, que pode ser incrementada cada vez que uma nova cópia da classe é criada. Variáveis locais - São usadas para armazenar o estado temporário de um método. Variáveis locais são acessíveis somente dentro do método em que são declaradas, e automaticamente abandonadas na saída deste. Parâmetros - São os parâmetros de métodos. Tais variáveis são acessíveis somente ao código no corpo do método. Geralmente quando falamos de "campos em geral" (excluindo variáveis locais e parâmetros), podemos simplesmente dizer "campos". Se a discussão se aplica a todas as variáveis acima, usamos "variáveis". Se o contexto pede uma distinção, usamos termos específicos (campo estático, variável local, etc) como apropriado. Podemos ainda usar o termo "membro". Os campos, métodos e tipos aninhados de um tipo podem ser chamados de seus membros. |
Delphi ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como calcular o comprimento da hipotenusa em Delphi dadas as medidas do cateto oposto e do cateto adjascenteQuantidade de visualizações: 1765 vezes |
Nesta dica mostrarei como é possível usar a linguagem Delphi para retornar o comprimento da hipotenusa dadas as medidas do cateto oposto e do cateto adjascente. Vamos começar analisando a imagem a seguir:![]() Veja que, nessa imagem, eu já coloquei os comprimentos da hipotenusa, do cateto oposto e do cateto adjascente. Para facilitar a conferência dos cálculos, eu coloquei também os ângulos theta (que alguns livros chamam de alfa) e beta já devidamente calculados. Então, sabendo que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos (Teorema de Pitógoras), tudo que temos a fazer a converter esta fórmula para código Delphi. Veja: procedure TForm2.Button1Click(Sender: TObject); var a, b, c: Real; begin a := 20; // medida do cateto oposto b := 30; // medida do cateto adjascente // agora vamos calcular o comprimento da hipotenusa c := sqrt(sqr(a) + sqr(b)); // e mostramos o resultado Edit1.Text := 'A medida da hipotenusa é: ' + FloatToStr(c); end; Perceba que o cálculo foi efetuado a partir do evento Click de um botão Button1 e o resultado foi exibido na propriedade Text de uma caixa de texto Edit1. Ao executar este código Delphi nós teremos o seguinte resultado: A medida da hipotenusa é: 36,0555127546399 Como podemos ver, o resultado retornado com o código Delphi confere com os valores da imagem apresentada. |
Java ::: Java para Engenharia ::: Unidades de Medida |
Como converter Centímetros Cúbicos em Metros Cúbicos em Java - Java para Física e EngenhariaQuantidade de visualizações: 402 vezes |
Em muitas situações nós temos uma medida de volume em cm3 e queremos transformá-la em m3, que é a medida de volume do Sistema Internacional (SI). Para isso só precisamos dividir os centímetros cúbicos por 1.000.000. Veja a fórmula: \[\text{Metros Cúbicos} = \frac{\text{Centímetros Cúbidos}}{1.000.000} \] Agora veja o código Java que pede para o usuário informar a medida de volume em centímetros cúbicos e a converte para metros cúbicos. Note que mostrei como exibir o resultado em notação científica e sem notação científica: package estudos; import java.util.Scanner; public class Estudos { public static void main(String[] args) { // para ler a entrada do usuário Scanner entrada = new Scanner(System.in); // vamos ler a medida em centímetros cúbicos System.out.print("Informe os centímetros cúbicos: "); double cent_cubicos = Double.parseDouble(entrada.nextLine()); // agora calculamos os metros cúbicos double met_cubicos = cent_cubicos / 1000000.00; // e mostramos o resultado System.out.println("Você informou " + cent_cubicos + " centímetros cúbicos."); System.out.println("Isso equivale a " + met_cubicos + " metros cúbicos."); System.out.printf("Sem notação científica: %f\n", met_cubicos); } } Ao executar este código Java nós teremos o seguinte resultado: Informe os centímetros cúbicos: 35 Você informou 35.0 centímetros cúbicos. Isso equivale a 3.5E-5 metros cúbicos. Sem notação científica: 0,000035 |
C# ::: Windows Forms ::: ListBox |
Como retornar a quantidade de itens em uma ListBox do C# Windows Forms usando a propriedade CountQuantidade de visualizações: 10702 vezes |
Em algumas situações nós precisamos obter a quantidade de itens presentes em um controle ListBox do C# Windows Forms. Para isso nós podemos usar a propriedade Count da coleção Items da ListBox. Veja um exemplo de seu uso: private void button1_Click(object sender, EventArgs e) { MessageBox.Show("A ListBox contém " + listBox1.Items.Count + " itens"); } Ao executar este código C# nós teremos uma mensagem com o texto: A ListBox contém 3 itens. |
Dart ::: Dicas de Estudo e Anotações ::: Estruturas de Controle |
Como usar o laço while da linguagem DartQuantidade de visualizações: 2439 vezes |
O laço while (enquanto), ou loop while, é usado quando queremos repetir uma ou mais instruções ENQUANTO uma condição estiver sendo satisfeita. A condição para a execução desse laço é o retorno de uma condição true ou false. Veja um exemplo no qual usamos o laço while para contar de 0 até 10: void main() { int cont = 1; while (cont < 10) { print(cont); cont++; // aumenta cont em 1 } } Este código, quando executado, gera o seguinte resultado: 1 2 3 4 5 6 7 8 9 É importante observar que um laço while pode nunca ser executado. Para isso basta que o teste condicional na entrada do laço retorne um resultado falso. Veja agora como usar um laço while para encontrar os 10 primeiros múltiplos de 5 e 7: void main() { int cont = 0; int numero = 1; // queremos encontrar 10 múltiplos de 5 e 7 while (cont < 10) { if ((numero % 5 == 0) && (numero % 7 == 0)) { print(numero); cont++; } // incrementa o número numero++; } } Quando executamos este código nós obtemos o seguinte resultado: 35 70 105 140 175 210 245 280 315 350 |
Python ::: Python para Engenharia ::: Engenharia Civil - Concreto, Concreto Armado e Concretos Especiais |
Como calcular a Resistência à Tração do Concreto usando Python - Python para Engenharia Civil e Cálculo EstruturalQuantidade de visualizações: 215 vezes |
A resistência à tração do concreto é a capacidade máxima de tensão de tração que o material pode suportar antes de se romper. Ela é menor que a resistência à compressão do concreto, podendo representar cerca de 10% dela. O concreto pode falhar rapidamente quando submetido a força de tração, como dobramento ou alongamento. Isso acontece porque o concreto é composto por agregados e pasta de cimento, e sua estrutura nunca é completamente homogênea. A resistência à tração direta do concreto é muito útil na determinação da armadura de tração mínima em uma viga de concreto armado, e usada também nos cálculos estruturais em geral (ABNT NBR 6118). Assim, a resistência à tração média do concreto pode ser calculada pela seguinte fórmula: \[f_\text{ctk,m} = 0,3 \cdot \sqrt[3]{{f_\text{ck}}^2}\] Onde: fctk,m é a resistência à tração média do concreto em Mpa; fck é a resistência à compressão do concreto em Mpa. Note que, uma vez obtida a resistência à tração média do concreto (que é um método estatístico), podemos obter seus limites inferior e superior usando as seguintes fórmulas: \[f_\text{ctk,inf} = 0,7 \cdot f_\text{ctk,m}\]\[f_\text{ctk,sup} = 1,3 \cdot f_\text{ctk,m}\] Veja agora o código Python que pede para o usuário informar o FCK do concreto e calcula o fctk,m, fctk,inf e fctk,sup: # vamos importar o módulo Math import math # função principal do programa def main(): # vamos pedir para o usuário informar o FCK do concreto fck = float(input("Informe o FCK do concreto em Mpa: ")) # agora vamos calcular a resistência à tração média # do concreto fctk_m = 0.3 * math.pow(fck, 2.0 / 3.0) # vamos calcular o limite inferior fctk_inf = 0.7 * fctk_m # vamos calcular o limite superior fctk_sup = 1.3 * fctk_m # e mostramos os resultados print("\nO fctk,m é: {0} Mpa ({1} kN/cm2)".format(round(fctk_m, 5), round(fctk_m / 10.0, 5))) print("O fctk,inf é: {0} Mpa ({1} kN/cm2)".format(round(fctk_inf, 5), round(fctk_inf / 10.0, 5))) print("O fctk,sup é: {0} Mpa ({1} kN/cm2)".format(round(fctk_sup, 5), round(fctk_sup / 10.0, 5))) if __name__ == "__main__": main() Ao executar este código Python nós teremos o seguinte resultado: Informe o FCK do concreto em Mpa: 30 O fctk,m é: 2.89647 Mpa (0.28965 kN/cm2) O fctk,inf é: 2.02753 Mpa (0.20275 kN/cm2) O fctk,sup é: 3.76541 Mpa (0.37654 kN/cm2) |
Nossas 20 dicas & truques de programação mais populares |
Portugol - Como resolver uma equação do segundo grau em Portugol - Como calcular Bhaskara em Portugol Java - Exercícios Resolvidos de Java - Como calcular e exibir os 50 primeiros números primos em Java |
Você também poderá gostar das dicas e truques de programação abaixo |
Nossas 20 dicas & truques de programação mais recentes |
Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site |
Python - Como criar o jogo Pedra, Papel, Tesoura em Python - Jogo completo em Python com código comentado |
Últimos Exercícios Resolvidos |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
1º lugar: Java |