| Você está aqui: Python ::: Python para Engenharia ::: Geometria Analítica e Álgebra Linear | 
| Como calcular o determinante de uma matriz 3x3 usando a Método de Sarrus em Python - Python para Álgebra LinearQuantidade de visualizações: 5810 vezes | 
| Os estudos da Geometria Analítica e Álgebra Linear envolvem, em boa parte de seus cálculos, a magnitude de vetores, ou seja, o módulo, tamanho, comprimento ou intensidade dos vetores. E isso não é diferente em relação às matrizes. Quando uma matriz é envolvida nos cálculos, com muita frequência precisamos obter o seu determinante, que nada mais é que um número real associado à todas as matrizes quadradas. Nesta dica mostrarei como obter o determinante de uma matriz quadrada de ordem 3, ou seja, três linhas e três colunas, usando o Método de Sarrus (somente matrizes 3x3). Note que é possível obter o mesmo resultado com o Teorema de Laplace, que não está restrito às matrizes quadradas de ordem 3. Veja também que não considerei as propriedades do determinante, o que, em alguns casos, simplifica muito os cálculos. Então, vamos supor a seguinte matriz 3x3:  O primeiro passo é copiarmos a primeira e a segunda colunas para o lado direito da matriz. Assim:  Agora dividimos a matriz em dois conjuntos: três linhas diagonais descendentes e três linhas diagonais ascendentes:  Agora é só efetuar cálculos. Multiplicamos e somamos os elementos de cada conjunto, subtraindo o segundo conjunto do primeiro. Veja: (1 x 5 x 9 + 2 x 6 x 7 + 3 x 4 x 8) - (7 x 5 x 3 + 8 x 6 x 1 + 9 x 4 x 2) = 0 Como podemos ver, o determinante dessa matriz é 0. E agora veja o código Python no qual declaramos e instanciamos uma matriz 3x3, em seguida, calculamos o seu determinante: ----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------
# importamos a bibliteca NumPy
import numpy as np
# função principal do programa
def main():
  # vamos criar uma matriz 3x3
  m = np.array([(1, 2, 3), (2, 5, 2), (1, 3, 1)])
  
  # calcula o determinante usando a Regra de Sarrus
  det = ((m[0][0] * m[1][1] * m[2][2]) + (m[0][1]  
    * m[1][2] * m[2][0]) + (m[0][2] * m[1][0] * m[2][1])) - ((m[2][0] 
    * m[1][1] * m[0][2]) + (m[2][1]  * m[1][2] * m[0][0]) + (m[2][2] 
    * m[1][0] * m[0][1]))
    
  # mostramos o resultado
  print("O determinante da matriz é: %f" % det)
  
if __name__== "__main__":
  main()
Ao executar este código Python nós teremos o seguinte resultado: O determinante da matriz é: 2.0 É possível também obter o determinante de uma matriz (não restrita à dimensão 3x3) usando o método linalg.det() da biblioteca NumPy do Python. Veja o código a seguir: ----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------
# importamos a bibliteca NumPy
import numpy as np
# função principal do programa
def main():
  # vamos criar uma matriz 3x3
  m = np.array([(1, 2, 3), (2, 5, 2), (1, 3, 1)])
  
  # calcula o determinante usando apenas NumPy
  det = np.linalg.det(m)
    
  # mostramos o resultado
  print("O determinante da matriz é: %f" % det)
  
if __name__== "__main__":
  main()
Veja que usei a mesma matriz e, usando apenas o método linalg.det() nós obtemos o mesmo resultado. | 
|  Link para compartilhar na Internet ou com seus amigos: | 
| Desafios, Exercícios e Algoritmos Resolvidos de Python | 
| Veja mais Dicas e truques de Python | 
| Dicas e truques de outras linguagens | 
| E-Books em PDF | ||||
| 
 | ||||
| 
 | ||||
| Linguagens Mais Populares | ||||
| 
			   1º lugar: Java | 


 
 




