Planilha Web - Planilhas e Calculadoras online para estudantes e profissionais de Engenharia Civil, Engenharia Elétrica e Engenharia Mecânica.
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser. Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 19,90
C ::: Dicas & Truques ::: Arquivos e Diretórios

Como testar se um arquivo existe usando a linguagem C

Quantidade de visualizações: 14322 vezes
Muitas vezes precisamos saber se um determinado arquivo existe antes de efetuarmos alguma operação. O trecho de código abaixo mostra como você pode implementar uma função file_exists() em C que pode ser usada em seus programas. O segredo aqui é tentar abrir o arquivo passado como argumento para a função. Se o arquivo for aberto com sucesso, sabemos que ele existe e a função retorna o valor 1 (true), do contrário retorna 0 (false):

#include <stdio.h>
#include <stdlib.h>

/*
  Implementação de uma função file_exists() em C. Se
  o arquivo existir o valor 1 (true) será retornado. Caso
  contrário a função retornará 0 (false).
*/
int file_exists(const char *filename)
{
  FILE *arquivo;

  if(arquivo = fopen(filename, "r"))
  {
    fclose(arquivo);
    return 1;
  }
  return 0;
}

int main(int argc, char *argv[])
{
  // testa se o arquivo existe
  if(file_exists("c:\\testes.txt")){
    printf("O arquivo existe no local especificado.\n");
  }
  else
    printf("O arquivo NAO existe no local especificado.\n");

  printf("\n\n");
  system("PAUSE");
  return 0;
}



Ruby ::: Desafios e Lista de Exercícios Resolvidos ::: Arrays e Matrix (Vetores e Matrizes)

Exercícios Resolvidos de Ruby - Escreva um programa Ruby para mover todos os zeros para o final do vetor, sem alterar a ordem dos elementos já presentes no array

Quantidade de visualizações: 1241 vezes
Pergunta/Tarefa:

Dado o seguinte vetor de inteiros:

# vamos declarar e construir um vetor de 8 inteiros
valores = [0, 3, 0, 5, 7, 4, 0, 9]
Escreva um programa Ruby para mover todos os zeros para o final do vetor, ou seja, para a direita, sem alterar a ordem dos elementos diferentes de zero já presentes no array e sem criar um vetor adicional ou temporário.

Sua saída deverá ser parecida com:

Vetor na ordem original:

0   3   0   5   7   4   0   9   

Vetor com os zeros deslocados para o final:

3   5   7   4   9   0   0   0
Resposta/Solução:

Veja a resolução comentada deste exercício usando Ruby:

# vamos declarar e construir um vetor de 8 inteiros
valores = [0, 3, 0, 5, 7, 4, 0, 9]   
	
# vamos mostrar o vetor na ordem original
print("Vetor na ordem original:\n")
for i in (0..valores.length - 1)
  printf("%d   ", valores[i])
end    
	
# vamos inicializar j como 0 para que ele aponte para
# o primeiro elemento do vetor
j = 0
    
# agora o laço for percorre todos os elementos do vetor,
# incrementanto a variável i e deixando o j em 0
for i in (0..valores.length - 1)
  # encontramos um valor que não é 0
  if(valores[i] != 0)
    # fazemos a troca entre os elementos nos índices
    # i e j
    temp = valores[i]
    valores[i] = valores[j]
    valores[j] = temp
    # e avançamos o j para o elemento seguinte
    j = j + 1
  end
end

# agora mostramos o resultado
print("\n\nVetor com os zeros deslocados para o final:\n")
for i in (0..valores.length - 1)
  printf("%d   ", valores[i])
end

Não se esqueça: A resolução do exercício deve ser feita sem a criação de um vetor, array ou lista adicional, e os elementos diferentes de zero devem permanecer na mesma ordem que eles estavam antes.


Java ::: Java para Engenharia ::: Geometria Analítica e Álgebra Linear

Como converter Coordenadas Cartesianas para Coordenadas Polares usando Java - Java para Engenharia

Quantidade de visualizações: 2210 vezes
Nesta nossa série de Java para Geometria Analítica e Álgebra Linear, mostrarei um código 100% funcional para fazer a conversão entre coordenadas cartesianas e coordenadas polares. Esta operação é muito frequente em computação gráfica e é parte integrante das disciplinas dos cursos de Engenharia (com maior ênfase na Engenharia Civil).

Na matemática, principalmente em Geometria e Trigonometria, o sistema de Coordenadas no Plano Cartesiano, ou Espaço Cartesiano, é um sistema que define cada ponto em um plano associando-o, unicamente, a um conjuntos de pontos numéricos.

Dessa forma, no plano cartesiano, um ponto é representado pelas coordenadas (x, y), com o x indicando o eixo horizontal (eixo das abscissas) e o y indicando o eixo vertical (eixo das ordenadas). Quando saímos do plano (espaço 2D ou R2) para o espaço (espaço 3D ou R3), temos a inclusão do eixo z (que indica profundidade).

Já o sistema de Coordenadas Polares é um sistema de coordenadas em duas dimensões no qual cada ponto no plano é determinado por sua distância a partir de um ponto de referência conhecido como raio (r) e um ângulo a partir de uma direção de referência. Este ângulo é normalmente chamado de theta (__$\theta__$). Assim, um ponto em Coordenadas Polares é conhecido por sua posição (r, __$\theta__$).

Antes de prosseguirmos, veja uma imagem demonstrando os dois sistemas de coordenadas:



A fórmula para conversão de Coordenadas Cartesianas para Coordenadas Polares é:

__$r = \sqrt{x^2+y2}__$
__$\theta = \\arctan\left(\frac{y}{x}\right)__$

E aqui está o código Java completo que recebe as coordenadas cartesianas (x, y) e retorna as coordenadas polares (r, __$\theta__$):

package arquivodecodigos;
 
import java.util.Scanner;

public class Estudos{
  public static void main(String args[]){
    Scanner entrada = new Scanner(System.in);
    // vamos ler as coordenadas cartesianas
    System.out.print("Valor de x: ");
    double x = Double.parseDouble(entrada.nextLine());
    System.out.print("Valor de y: ");
    double y = Double.parseDouble(entrada.nextLine());
    
    // vamos calcular o raio
    double raio = Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));  

    // agora calculamos o theta (ângulo) em radianos 
    double theta = Math.atan2(y, x);

    // queremos o ângulo em graus também
    double angulo_graus = 180 * (theta / Math.PI); 

    // e exibimos o resultado
    System.out.println("As Coordenadas Polares são:\n" +
      "raio = " + raio + ", theta = " + theta + ", ângulo em graus = " +
      angulo_graus);
  }
}

Ao executar este código nós teremos o seguinte resultado:

Valor de x: -1
Valor de y: 1
As Coordenadas Polares são:
raio = 1.4142135623730951, theta = 2.356194490192345, ângulo em graus = 135.0

Veja que as coordenadas polares equivalentes são (__$\sqrt{2}__$, __$\frac{3\pi}{4}__$), com o theta em radianos. Sim, os professores das disciplinas de Geometria Analítica e Álgebra Linear, Física e outras gostam de escrever os resultados usando raizes e frações em vez de valores reais.


Java ::: Desafios e Lista de Exercícios Resolvidos ::: Arrays e Matrix (Vetores e Matrizes)

Exercícios Resolvidos de Java - Como verificar quantas vezes um valor é encontrado em um vetor - Como usar vetores e matrizes em Java

Quantidade de visualizações: 16218 vezes
Pergunta/Tarefa:

Escreva um programa Java que declara, constrói e inicializa um vetor de 10 inteiros. Em seguida peça para que o usuário informe um valor a ser pesquisado. Faça uma varredura no vetor e informe quantas vezes o valor pesquisado é encontrado:

// declara, constrói e inicializa um vetor de 10 inteiros
int valores[] = {4, 21, 9, 8, 12, 21, 4, 4, 1, 10};
Sua saída deverá ser parecida com:

Informe um valor: 4
O valor foi encontrado: 3 vezes

Informe um valor: 8
O valor foi encontrado: 1 vezes

Informe um valor: 3
O valor foi encontrado: 0 vezes
Resposta/Solução:

Veja a resolução comentada deste exercício usando Java:

package estudos;

import java.util.Scanner;

public class Estudos{ 
  public static void main(String[] args){
    // declara, constrói e inicializa um vetor de 10 inteiros
    int valores[] = {4, 21, 9, 8, 12, 21, 4, 4, 1, 10};

    // para ler a entrada do usuário
    Scanner entrada = new Scanner(System.in);
    
    // vamos ler um valor inteiro
    System.out.print("Informe um valor: ");
    int pesquisa = Integer.parseInt(entrada.nextLine());
        
    // vamos verificar quantas vezes o valor informado está
    // contido no vetor
    int repeticoes = 0;
    for(int i = 0; i < valores.length; i++){
      if(valores[i] == pesquisa){
        repeticoes++; // encontrou? vamos contar esta ocorrência
      }
    }
        
    // vamos mostrar o resultado
    System.out.println("O valor foi encontrado: " +
      repeticoes + " vezes"); 
  }
}



LISP ::: LISP para Engenharia ::: Geometria Analítica e Álgebra Linear

Como converter Coordenadas Cartesianas para Coordenadas Polares em LISP - LISP para Engenharia

Quantidade de visualizações: 806 vezes
Nesta nossa série de LISP e AutoLISP para Geometria Analítica e Álgebra Linear, mostrarei um código 100% funcional para fazer a conversão entre coordenadas cartesianas e coordenadas polares. Esta operação é muito frequente em computação gráfica e é parte integrante das disciplinas dos cursos de Engenharia (com maior ênfase na Engenharia Civil).

Na matemática, principalmente em Geometria e Trigonometria, o sistema de Coordenadas no Plano Cartesiano, ou Espaço Cartesiano, é um sistema que define cada ponto em um plano associando-o, unicamente, a um conjuntos de pontos numéricos.

Dessa forma, no plano cartesiano, um ponto é representado pelas coordenadas (x, y), com o x indicando o eixo horizontal (eixo das abscissas) e o y indicando o eixo vertical (eixo das ordenadas). Quando saímos do plano (espaço 2D ou R2) para o espaço (espaço 3D ou R3), temos a inclusão do eixo z (que indica profundidade).

Já o sistema de Coordenadas Polares é um sistema de coordenadas em duas dimensões no qual cada ponto no plano é determinado por sua distância a partir de um ponto de referência conhecido como raio (r) e um ângulo a partir de uma direção de referência. Este ângulo é normalmente chamado de theta (__$\theta__$). Assim, um ponto em Coordenadas Polares é conhecido por sua posição (r, __$\theta__$).

Antes de prosseguirmos, veja uma imagem demonstrando os dois sistemas de coordenadas:



A fórmula para conversão de Coordenadas Cartesianas para Coordenadas Polares é:

__$r = \sqrt{x^2+y2}__$
__$\theta = \\arctan\left(\frac{y}{x}\right)__$

E aqui está o código LISP completo que recebe as coordenadas cartesianas (x, y) e retorna as coordenadas polares (r, __$\theta__$):

; programa LISP que converte Coordenadas Cartesianas
; em Coordenadas Polares
(let((x)(y)(raio)(theta)(angulo_graus))
  ; vamos ler as coordenadas cartesianas
  (princ "Valor de x: ")
  (force-output)
  (setq x (read))
  (princ "Valor de y: ")
  (force-output)
  (setq y (read))
  
  ; vamos calcular o raio
  (setq raio (sqrt (+ (expt x 2) (expt y 2))))
  
  ; agora calculamos o theta (ângulo) em radianos 
  (setq theta (atan y x))

  ; queremos o ângulo em graus também
  (setq angulo_graus (* 180 (/ theta pi)))
  
  ; e exibimos o resultado
  (princ "As Coordenadas Polares são: ")
  (format t "raio = ~F, theta = ~F, ângulo em graus: ~F"
    raio theta angulo_graus)
)

Ao executar este código LISP nós teremos o seguinte resultado:

Valor de x: -1
Valor de y: 1
As Coordenadas Polares são:
raio = 1.4142135623730951, theta = 2.356194490192345, ângulo em graus = 135.0

Veja que as coordenadas polares equivalentes são (__$\sqrt{2}__$, __$\frac{3\pi}{4}__$), com o theta em radianos. Sim, os professores das disciplinas de Geometria Analítica e Álgebra Linear, Física e outras gostam de escrever os resultados usando raizes e frações em vez de valores reais.


Java ::: Fundamentos da Linguagem ::: Tipos de Dados

Como usar null em Java

Quantidade de visualizações: 32046 vezes
O tipo de dados null é um tipo (ou valor) especial que indica que uma referência não está apontando para nenhum objeto, ou seja, aponta para uma posição de memória nula. Este tipo pode ser atribuído (ou testado) apenas a referências. Seu uso não é permitido com primitivos.

Veja um trecho de código no qual definimos que uma variável do tipo String aponta para um objeto nulo:

public class Estudos{
  public static void main(String args[]){
    String nome = null;  

    System.out.println(nome.length());    

    System.exit(0);
  }
}

Este código compila normalmente. Porém, ao tentarmos executá-lo, temos uma exceção de tempo de execução NullPointerException:

Exception in thread "main" 
java.lang.NullPointerException
  at Estudos.main(Estudos.java:5)


Isso aconteceu porque estamos tentando executar um método de um objeto que não existe.

Uma técnica muito valiosa é testar se uma referência não está apontando para um objeto nulo. Veja como isso é feito:

public class Estudos{
  public static void main(String args[]){
    String nome = null;  

    if(nome != null)
      System.out.println(nome.length());    
    else
      System.out.println("Objeto é nulo.");      

    System.exit(0);
  }
}

Tenha em mente que, quando uma referência recebe o valor null, o objeto para o qual ela apontava fica imediatamente disponível para o coletor de lixo (Garbagge Colector), ou seja, a memória ocupada pelo objeto pode ser liberada a qualquer momento.

Veja agora o que acontece quando tentamos atribuir o valor null a um primitivo:

public class Estudos{
  public static void main(String args[]){
    int valor = null;     

    System.exit(0);
  }
}

Eis a mensagem de erro de compilação:

Estudos.java:3: incompatible types
found   : <nulltype>
required: int
 int valor = null;
             ^
1 error



Java ::: Pacote java.awt ::: Graphics

Como retornar a cor atual do contexto de desenho usando o método getColor() da classe Graphics do Java - Computação gráfica em Java

Quantidade de visualizações: 7996 vezes
Antes de efetuar qualquer desenho na superfície de um componente, é importante saber qual cor está definida no momento, assim podemos alterá-la se necessário. Para isso podemos usar o método getColor() da classe Graphics. Este método retorna um objeto da classe Color.

Veja um exemplo no qual obtemos a cor usada atualmente para desenhar na superfície de um JLabel:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Estudos extends JFrame{
  JLabel label;  

  public Estudos() {
    super("Desenhando");
    
    Container c = getContentPane();
    c.setLayout(new BorderLayout());

    // Cria um JLabel
    label = new JLabel();
    c.add(label, BorderLayout.CENTER);

    // Cria um botão
    JButton btn = new 
      JButton("Obter a cor do contexto");
    btn.addActionListener(
      new ActionListener(){
        public void actionPerformed(ActionEvent e){
          
          Graphics graphics = label.getGraphics();
          
          // obtém a cor usada para desenhar no
          // contexto de desenho
          Color cor = graphics.getColor();
          JOptionPane.showMessageDialog(null,
            "A cor usada atualmente é " +
            cor.toString());
        }
      }
    );
    
    // Adiciona o botão à janela
    c.add(btn, BorderLayout.SOUTH);

    setSize(350, 250);
    setVisible(true);
  }
  
  public static void main(String args[]){
    Estudos app = new Estudos();
    app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
  }
}

Ao executar este código Java nós teremos o seguinte resultado:

A cor usada atualmente é java.awt.Color[r=0,g=0,b=0]


Java ::: Dicas & Truques ::: Matemática e Estatística

Como calcular porcentagem em Java - Como efetuar cálculos de porcentagem em Java

Quantidade de visualizações: 55356 vezes
Cálculos de porcentagens estão presentes em boa parte das aplicações que desenvolvemos. Porém, há momentos em que a mente trava e não conseguimos lembrar com clareza como estes cálculos são feitos, principalmente em Java.

Esta anotação tem o objetivo de ser uma fonte de pesquisa para os momentos em que suas habilidades matemáticas insistirem em continuar ocultas.

Ex: 1 - Suponhamos que um produto que custe R$ 178,00 sofra um acréscimo de 15%. Qual o valor final do produto? Veja o código em Java:

// Algoritmo que calcula porcentagem em Java
package estudos;

public class Estudos {
  public static void main(String[] args) {
    // variáveis usadas na resolução do problema
    double valor, percentual, valor_final;

    valor = 178.00; // valor original
    percentual = 15.0 / 100.0; // 15%
    valor_final = valor + (percentual * valor);

    // mostra o resultado
    System.out.println("O valor final do produto é: " + valor_final);

    // O resultado será 204,70
  }
}

Ex: 2 - Um produto, cujo valor original era de R$ 250,00, teve um desconto de 8%. Qual foi seu valor final? Veja o código em Java:

// Algoritmo que calcula porcentagem em Java
package estudos;

public class Estudos {
  public static void main(String[] args) {
    // variáveis usadas na resolução do problema
    double valor, percentual, valor_final;

    valor = 250.00; // valor original
    percentual = 8.0 / 100.0; // 8%
    valor_final = valor - (percentual * valor);

    // mostra o resultado
    System.out.println("O valor final do produto é: " + valor_final);
  
    // O resultado será 230,00
  }
}

Ex: 3 - Em um concurso de perguntas e respostas, um jovem acertou 72 das 90 perguntas apresentadas. Qual foi a porcentagem de acertos? E a porcentagem de erros? Veja o código em Java:

// Algoritmo que calcula porcentagem em Java
package estudos;

public class Estudos {
  public static void main(String[] args) {
    // variáveis usadas na resolução do problema
    double perguntas, acertos;

    perguntas = 90.0;
    acertos = 72.0;

    // mostra a porcentagem de acertos
    System.out.print("Porcentagem de acertos: ");
    System.out.println(((acertos / perguntas) * 100) + "%");

    // mostra a porcentagem de erros
    System.out.print("Porcentagem de erros: ");
    System.out.println((((perguntas - acertos) / perguntas) * 100) + "%");

    // Os resultados serão 80% e 20%
  }
}

Ex: 4 - Um aparelho de CD foi adquirido por R$ 300,00 e revendido por R$ 340,00. Qual foi a porcentagem de lucro na transação? Veja o código em Java:

// Algoritmo que calcula porcentagem em Java
package estudos;

public class Estudos {
  public static void main(String[] args) {
    // variáveis usadas na resolução do problema
    double valor_anterior, novo_valor, porcentagem_lucro;

    valor_anterior = 300.0; // valor anterior
    novo_valor = 340.0; // valor novo

    // calcula a porcentagem de lucro
    // efetua o cálculo
    porcentagem_lucro = ((novo_valor * 100) / valor_anterior) - 100;

    System.out.println("A porcentagem de lucro foi de: " +
      porcentagem_lucro + "%");

    // O resultado será 13,33
  }
}

Ex: 5 - Uma loja repassa 5% do lucro a seus vendedores. Se um produto custa R$ 70,00, qual o valor em reais repassado a um determinado vendedor? Veja o código em Java:

// Algoritmo que calcula porcentagem em Java
package estudos;

public class Estudos {
  public static void main(String[] args) {
    // variáveis usadas na resolução do problema
    double valor, percentual, comissao;

    valor = 70.0; // valor do produto
    percentual = 5.0 / 100.0; // 5%

    // calcula a comissão
    comissao = percentual * valor;

    // mostra o resultado
    System.out.println("O valor repassado ao vendedor é: " + comissao);

    // O resultado será 3,5
  }
}



C++ ::: Dicas & Truques ::: Strings e Caracteres

Como embaralhar os caracteres de uma string em C++ usando a função random_shuffle()

Quantidade de visualizações: 13086 vezes
Em algumas situações, tais como o desenvolvimento de um gerador de senhas aleatórias, pode ser necessário embaralharmos as letras de uma palavra. Em C++ isso pode ser feito por meio do uso da função random_shuffle() da STL (Standard Template Library). Não se esqueça de efetuar uma chamada a srand() antes do código que embaralha os caracteres da string.

Veja o código C++ completo para o exemplo:

#include <string>
#include <iostream>
#include <algorithm>
#include <time.h>

using namespace std;

int main(int argc, char *argv[]){
  // vamos iniciar o gerador de números
  // aleatórios
  srand(time(NULL));

  // vamos criar uma string
  string palavra = "JAVASCRIPT";
  cout << "Palavra original: " << palavra << endl;
  
  // vamos embaralhar as palavras da string
  random_shuffle(palavra.begin(), palavra.end());

  // exibe o resultado
  cout << "Palavra com caracteres embaralhados: " << palavra << "\n\n";

  system("PAUSE"); // pausa o programa
  return EXIT_SUCCESS;
}

Ao executar este código C++ nós teremos o seguinte resultado:

Palavra original: JAVASCRIPT
Palavra com caracteres embaralhados: RPSAITCVAJ


Java ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como calcular o cateto adjascente dadas as medidas da hipotenusa e do cateto oposto em Java

Quantidade de visualizações: 1456 vezes
Nesta dica mostrarei como podemos tirar proveito do Teorema de Pitágoras para obter a medida do cateto adjascente quando temos as medidas da hipotenusa e do cateto oposto. Este teorema diz que "o quadrado da hipotenusa é igual à soma dos quadrados dos catetos", o que torna a nossa tarefa, na linguagem Java, muito fácil.

Comece observando a imagem a seguir:



Veja que, nessa imagem, eu já coloquei os comprimentos da hipotenusa, do cateto oposto e do cateto adjascente. Para facilitar a conferência dos cálculos, eu coloquei também os ângulos theta (que alguns livros chamam de alfa) e beta já devidamente calculados. A medida da hipotenusa é, sem arredondamentos, 36.056 metros.

Então, sabendo que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos (Teorema de Pitógoras):

\[c^2 = a^2 + b^2\]

Tudo que temos que fazer é mudar a fórmula para:

\[b^2 = c^2 - a^2\]

Veja que agora o quadrado do cateto adjascente é igual ao quadrado da hipotenusa menos o quadrado do cateto oposto. Não se esqueça de que a hipotenusa é o maior lado do triângulo retângulo.

Veja agora como esse cálculo é feito em linguagem Java:

package arquivodecodigos;

public class Estudos{
  public static void main(String args[]){
    double c = 36.056; // medida da hipotenusa
    double a = 20; // medida do cateto oposto
  
    // agora vamos calcular a medida da cateto adjascente
    double b = Math.sqrt(Math.pow(c, 2) - Math.pow(a, 2));
 
    // e mostramos o resultado
    System.out.println("A medida do cateto adjascente é: " +
      b);
  }
}

Ao executar este código Java nós teremos o seguinte resultado:

A medida do cateto adjascente é: 30.00058559428465

Como podemos ver, o resultado retornado com o código Java confere com os valores da imagem apresentada.

Carregar Publicações Anteriores


Nossas 20 dicas & truques de programação mais populares

Você também poderá gostar das dicas e truques de programação abaixo

Nossas 20 dicas & truques de programação mais recentes

Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site

Últimos Exercícios Resolvidos

E-Books em PDF

E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 16 usuários muito felizes estudando em nosso site.