![]() |
|||||
|
Java ::: Estruturas de Dados ::: Árvore Binária e Árvore Binária de Busca |
Estruturas de dados em Java - Como fazer a travessia de uma árvore binária de busca em Java usando o percurso em-ordem (in-order, In-ordem ou ordem simétrica)Quantidade de visualizações: 5064 vezes |
Antes de discutirmos o percurso in-order, veja a árvore binária de busca na figura abaixo:![]() Esta árvore possui 9 nós e obedece à regra de que os nós com valores menores que o nó pai ficam à sua esquerda, e aqueles com nós maiores que o nó pai, ficam à sua direita. O percurso em ordem é usado quando queremos exibir os valores dos nós da árvore binária de busca em ordem ascendente. Neste tipo de percurso nós visitamos primeiramente a sub-árvore da esquerda, então o nó atual e finalmente a sub-árvore à direita do nó atual. É importante notar que esta travessia é feita por meio de um método recursivo. Veja o código completo para o exemplo: Código para No.java: package arvore_binaria; public class No { private int valor; // valor armazenado no nó private No esquerdo; // filho esquerdo private No direito; // filho direito // construtor do nó public No(int valor){ this.valor = valor; this.esquerdo = null; this.direito = null; } public int getValor() { return valor; } public void setValor(int valor) { this.valor = valor; } public No getEsquerdo() { return esquerdo; } public void setEsquerdo(No esquerdo) { this.esquerdo = esquerdo; } public No getDireito() { return direito; } public void setDireito(No direito) { this.direito = direito; } } Código para ArvoreBinariaBusca.java: package arvore_binaria; public class ArvoreBinariaBusca { private No raiz; // referência para a raiz da árvore // método usado para inserir um novo nó na árvore // retorna true se o nó for inserido com sucesso e false // se o elemento // não puder ser inserido (no caso de já existir um // elemento igual) public boolean inserir(int valor){ // a árvore ainda está vazia? if(raiz == null){ // vamos criar o primeiro nó e definí-lo como a raiz da árvore raiz = new No(valor); // cria um novo nó } else{ // localiza o nó pai do novo nó No pai = null; No noAtual = raiz; // começa a busca pela raiz // enquanto o nó atual for diferente de null while(noAtual != null){ // o valor sendo inserido é menor que o nó atual? if(valor < noAtual.getValor()) { pai = noAtual; // vamos inserir do lado esquerdo noAtual = noAtual.getEsquerdo(); } // o valor sendo inserido é maior que o nó atual else if(valor > noAtual.getValor()){ pai = noAtual; // vamos inserir do lado direito noAtual = noAtual.getDireito(); } else{ return false; // um nó com este valor foi encontrado } } // cria o novo nó e o adiciona como filho do nó pai if(valor < pai.getValor()){ pai.setEsquerdo(new No(valor)); } else{ pai.setDireito(new No(valor)); } } return true; // retorna true para indicar que o novo nó foi inserido } // método que permite disparar a travessia em-ordem public void emOrdem(){ emOrdem(raiz); } // sobrecarga do método emOrdem com uma parâmetro (esta é a versão // recursiva do método) private void emOrdem(No raiz){ if(raiz == null){ // condição de parada return; } // visita a sub-árvore da esquerda emOrdem(raiz.getEsquerdo()); // visita o nó atual System.out.print(raiz.getValor() + " "); // visita a sub-árvore da direita emOrdem(raiz.getDireito()); } } E agora o código para a classe principal: package arvore_binaria; import java.util.Scanner; public class ArvoreBinariaTeste { public static void main(String[] args) { Scanner entrada = new Scanner(System.in); // vamos criar um novo objeto da classe ArvoreBinariaBusca ArvoreBinariaBusca arvore = new ArvoreBinariaBusca(); // vamos inserir 9 valores na árvore for(int i = 0; i < 9; i++){ System.out.print("Informe um valor inteiro: "); int valor = Integer.parseInt(entrada.nextLine()); // vamos inserir o nó e verificar o sucesso da operação if(!arvore.inserir(valor)){ System.out.println("Não foi possível inserir." + " Um elemento já contém este valor."); } } // vamos exibir os nós da árvore usando o percurso in-order System.out.println("\nPercurso in-order:"); arvore.emOrdem(); System.out.println("\n"); } } Ao executar este código teremos o seguinte resultado: Informe um valor inteiro: 8 Informe um valor inteiro: 3 Informe um valor inteiro: 10 Informe um valor inteiro: 1 Informe um valor inteiro: 6 Informe um valor inteiro: 14 Informe um valor inteiro: 4 Informe um valor inteiro: 7 Informe um valor inteiro: 13 Percurso in-order: 1 3 4 6 7 8 10 13 14 |
Portugol ::: Dicas & Truques ::: Cadeias e Caracteres |
Como converter uma palavra, frase ou texto para letras minúsculas usando a função caixa_baixa() da biblioteca Texto do PortugolQuantidade de visualizações: 191 vezes |
Em algumas situações nós precisamos converter uma letra, palavra, frase ou texto em letras minúsculas. Na linguagem Portugol isso pode ser feito usando-se a função caixa_baixa() da biblioteca Texto. Veja um código Portugol completo no qual pedimos para o usuário informar o seu nome e mostramos o resultado convertido para letras minúsculas: programa { // vamos incluir a biblioteca Texto inclua biblioteca Texto --> texto funcao inicio() { // vamos declarar uma variável para guardar o nome de uma pessoa cadeia nome, nome_minusculo // vamos pedir para o usuário informar o seu nome escreva("Informe o seu nome: ") leia(nome) // vamos converter o nome para letras minúsculas nome_minusculo = texto.caixa_baixa(nome) // vamos mostrar o resultado escreva("O seu nome em letras minúsculas é: " + nome_minusculo) } } Ao executar este código Portugol nós teremos o seguinte resultado: Informe o seu nome: Fabiana de Carvalho Gomes O seu nome em letras minúsculas é: fabiana de carvalho gomes |
AutoCAD Civil 3D .NET C# ::: Dicas & Truques ::: Alinhamento - Alignment |
Como retornar a quantidade de estacas de um alinhamento do Civil 3D usando a função GetStationSet() da classe Alignment da AutoCAD Civil 3D .NET APIQuantidade de visualizações: 636 vezes |
Nesta dica vou mostrar como podemos obter a quantidade de estacas em um alinhamento do Civil 3D usando a função GetStationSet() da classe Alignment da AutoCAD Civil 3D .NET API. Para este exemplo eu usei um alinhamento com o nome "EIXO DA RODOVIA". O primeiro passo é obter uma referência ao documento atual do AutoCAD Civil 3D usando CivilApplication.ActiveDocument. En seguida nós pesquisamos um alinhamento usando uma função personalizada GetAlignmentByName(), que recebe o documento atual e o nome do alinhamento que queremos pesquisar. O retorno desta função é um objeto da classe Alignment. Agora que já temos o alinhamento, nós usamos a função GetStationSet() para retornar um vetor de objetos Station, que significa estaca no Civil 3D. Note que passei como parâmetro o valor StationTypes.Major e usei alinhamento.StationIndexIncrement como o intervalo entre as estacas. Uma vez que já temos o vetor de objetos Station, ou seja, um vetor contendo todas as estacas do alinhamento, só precisamos obter a quantidade de itens usando a propriedade Length. Veja o código AutoCAD Civil 3D .NET C# completo para o exemplo: using System; using Autodesk.AutoCAD.Runtime; using Autodesk.Civil.ApplicationServices; using Autodesk.AutoCAD.DatabaseServices; using Autodesk.AutoCAD.ApplicationServices; using Autodesk.AutoCAD.EditorInput; using Autodesk.Civil.DatabaseServices; namespace Estudos { public class Class1 : IExtensionApplication { [CommandMethod("Alinhamento")] public void Alinhamento() { // vamos obter uma referência ao documento atual do Civil 3D CivilDocument doc = CivilApplication.ActiveDocument; // obtemos o editor Editor editor = Application.DocumentManager.MdiActiveDocument.Editor; // vamos pesquisar o alinhamento chamado "EIXO DA RODOVIA" string nome = "EIXO DA RODOVIA"; // vamos iniciar um nova transação using (Transaction ts = Application.DocumentManager.MdiActiveDocument. Database.TransactionManager.StartTransaction()) { try { // efetuamos uma chamada ao método GetAlignmentByName() passando // o documento atual do AutoCAD Civil 3D e o nome do alinhamento // que queremos encontrar Alignment alinhamento = GetAlignmentByName(doc, nome); // ops, o alinhamento não foi encontrado if (alinhamento == null) { editor.WriteMessage("\nO alinhamento não foi encontrado."); } else { // encontramos o alinhamento. Vamos mostrar a quantidade de estacas // que ele possui Station[] estacas = alinhamento.GetStationSet(StationTypes.Major, alinhamento.StationIndexIncrement); int quant_estacas = estacas.Length; // e mostramos o resultado editor.WriteMessage("\nO alinhamento possui " + quant_estacas + " estacas.\n"); } } catch (System.Exception e) { // vamos tratar o erro editor.WriteMessage("Erro: {0}", e.Message); } } } // função C# que retorna um alinhamento por nome, ou null em // caso de não encontrar o alinhamento desejado public Alignment GetAlignmentByName(CivilDocument doc, string nome) { // vamos declarar um objeto da classe Alignment Alignment alinhamento = null; // agora vamos obter os ids de todos os alinhamentos ObjectIdCollection alinhamentos = doc.GetAlignmentIds(); // vamos percorrer todos os ids de alinhamentos retornados foreach (ObjectId idAlinhamento in alinhamentos) { alinhamento = idAlinhamento.GetObject(OpenMode.ForRead) as Alignment; // encontramos o alinhamento if (alinhamento.Name.Equals(nome)) { return alinhamento; } } // retorna null se o alinhamento não for encontrado return null; } public void Initialize() { // pode deixar em branco } public void Terminate() { // pode deixar em branco } } } Ao executar este código AutoCAD Civil 3D C# .NET nós teremos o seguinte resultado: O alinhamento possui 152 estacas. |
C ::: Dicas & Truques ::: Ordenação e Pesquisa (Busca) |
Ordenação e pesquisa em C - Como ordenar um vetor de inteiros usando a ordenação Insertion Sort (Ordenação por Inserção)Quantidade de visualizações: 3082 vezes |
A ordenação Insertion Sort, ou Ordenação por Inserção, possui uma complexidade de tempo de execução igual à ordenação Bubble Sort (Ordenação da Bolha), ou seja, O(n2). Embora mais rápido que o Bubble Sort, e ser um algorítmo de ordenação quadrática, a ordenação Insertion Sort é bastante eficiente para problemas com pequenas entradas, sendo o mais eficiente entre os algoritmos desta ordem de classificação, porém, nunca recomendada para um grande conjunto de dados. A forma mais comum para o entendimento da ordenação Insertion Sort é compará-la com forma pela qual algumas pessoas organizam um baralho num jogo de cartas. Imagine que você está jogando as cartas. Você está com as cartas na mão e elas estão ordenadas. Você recebe uma nova carta e deve colocá-la na posição correta da sua mão de cartas, de forma que as cartas obedeçam à ordenação. A cada nova carta adicionada à sua mão de cartas, a nova carta pode ser menor que algumas das cartas que você já tem na mão ou maior, e assim, você começa a comparar a nova carta com todas as cartas na sua mão até encontrar sua posição correta. Você insere a nova carta na posição correta, e, novamente, a sua mão é composta de cartas totalmente ordenadas. Então, você recebe outra carta e repete o mesmo procedimento. Então outra carta, e outra, e assim em diante, até não receber mais cartas. Esta é a ideia por trás da ordenação por inserção. Percorra as posições do vetor (array), começando com o índice 1 (um). Cada nova posição é como a nova carta que você recebeu, e você precisa inseri-la no lugar correto no sub-vetor ordenado à esquerda daquela posição. Vamos ver a implementação na linguagem C agora? Observe o seguinte código, no qual temos um vetor de inteiros com os elementos {4, 6, 2, 8, 1, 9, 3, 0, 11}: #include <stdio.h> #include <stdlib.h> // função que permite ordenar um vetor de inteiros // usando a ordenação Insertion Sort void insertionSort(int vetor[], int tam){ int i, temp, j; // este laço varre os elementos a partir do segundo // elemento, ou seja, o índice 1 for(i = 1; i < tam; i++){ // guardamos o elemento atual em temp temp = vetor[i]; for(j = i; ((j > 0) && (vetor[j - 1] > temp)); j--){ vetor[j] = vetor[j - 1]; // houve uma troca } vetor[j] = temp; // colocamos temp em seu devido lugar } } int main(int argc, char *argv[]){ int valores[] = {4, 6, 2, 8, 1, 9, 3, 0, 11}; int i, tamanho = 9; // imprime a matriz sem a ordenação puts("Sem ordenação:\n"); for(i = 0; i < 9; i++){ printf("%d ", valores[i]); } // vamos ordenar a matriz insertionSort(valores, tamanho); // imprime a matriz ordenada puts("\n\nOrdenada usando Insertion Sort:\n"); for(i = 0; i < 9; i++){ printf("%d ", valores[i]); } printf("\n\n"); system("PAUSE"); return 0; } Ao executar este código C nós teremos o seguinte resultado: Sem ordenação: 4 6 2 8 1 9 3 0 11 Ordenada usando Insertion Sort: 0 1 2 3 4 6 8 9 11 |
C# ::: Dicas & Truques ::: Strings e Caracteres |
Como transformar em letra maiúscula apenas a primeira letra de uma string C#Quantidade de visualizações: 22792 vezes |
Nesta dica mostrarei como é possível combinar o método ToUpper() da classe Char e o método Substring() da classe String do C# para converter para letra maiúscula apenas a primeira letra de uma palavra, frase ou texto. Veja o código completo para o exemplo: using System; namespace Estudos { class Program { static void Main(string[] args) { string frase = "gosto de java e c#"; Console.WriteLine("Original: " + frase); // vamos obter a primeira letra da string char primeira = char.ToUpper(frase[0]); // agora combinamos a letra obtida com o restante da string frase = primeira + frase.Substring(1); Console.WriteLine("Resultado: " + frase); Console.WriteLine("\n\nPressione uma tecla para sair..."); Console.ReadKey(); } } } Ao executarmos este código C# nós teremos o seguinte resultado: Original: gosto de java e c# Resultado: Gosto de java e c# |
Java ::: Java Swing - JTable e classes relacionadas ::: JTable |
Como aplicar cores alternadas às linhas de uma JTable do Java SwingQuantidade de visualizações: 293 vezes |
Nesta dica eu mostrarei como aplicar o tão falado "efeito zebrinha" nas linhas de uma tabela JTable do Java Swing. A técnica é muito simples é, uma vez aprendida, possibilita a criação de códigos cada vez mais interessantes. Veja como efetuo uma chamada ao método prepareRenderer() para obter um Component representando a célula que está sendo renderizada. Se o índice da linha da célula for par e não estiver selecionada, nós efetuamos uma chamada à setBackground() da classe Component para definir a sua cor de fundo. Veja o código completo para o exemplo: package arquivodecodigos; import javax.swing.*; import java.awt.*; import javax.swing.table.*; public class Estudos extends JFrame { public Estudos() { super("Exemplo de uma tabela com efeito zebrinha"); // colunas da tabela String[] colunas = {"Cidade", "Estado", "Habitantes"}; // conteúdo da tabela Object[][] conteudo = { {"Goiânia", "GO", "43.023.432"}, {"São Paulo", "SP", "5.343.234"}, {"Rio de Janeiro", "RJ", "6.434.212"}, {"Jussara", "GO", "87.454"}, {"Barra do Garças", "MT", "64.344"} }; // constrói a tabela final JTable tabela = new JTable(conteudo, colunas) { @Override public Component prepareRenderer(TableCellRenderer renderer, int rowIndex, int vColIndex) { Component c = super.prepareRenderer(renderer, rowIndex, vColIndex); if (rowIndex % 2 == 0 && !isCellSelected(rowIndex, vColIndex)) { c.setBackground(Color.YELLOW); } else { c.setBackground(getBackground()); } return c; } }; tabela.setPreferredScrollableViewportSize(new Dimension(350, 150)); Container c = getContentPane(); c.setLayout(new FlowLayout()); JScrollPane scrollPane = new JScrollPane(tabela); c.add(scrollPane); setSize(400, 300); setVisible(true); } public static void main(String args[]) { Estudos app = new Estudos(); app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); } } Ao executar este código Java Swing nós teremos o seguinte resultado: ![]() |
C++ ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como calcular o seno de um número ou ângulo em C++ usando a função sin()Quantidade de visualizações: 3383 vezes |
Em geral, quando falamos de seno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função seno disponível nas linguagens de programação para calcular o seno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria. No entanto, é sempre importante entender o que é a função seno. Veja a seguinte imagem: ![]() Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles. Assim, o seno é a razão entre o cateto oposto (oposto ao ângulo theta) e a hipotenusa, ou seja, o cateto oposto dividido pela hipotenusa. Veja a fórmula: \[\text{Seno} = \frac{\text{Cateto oposto}}{\text{Hipotenusa}} \] Então, se dividirmos 20 por 36.056 (na figura eu arredondei) nós teremos 0.5547, que é a razão entre o cateto oposto e a hipotenusa (em radianos). Agora, experimente calcular o arco-cosseno de 0.5547. O resultado será 0.9828 (em radianos). Convertendo 0.9828 radianos para graus, nós obtemos 56.31º, que é exatamente o ângulo em graus entre o cateto oposto e a hipotenusa na figura acima. Pronto! Agora que já sabemos o que é seno na trigonometria, vamos entender mais sobre a função sin() da linguagem C++. Esta função, disponível no header math.h, recebe um valor numérico e retorna um valor, também numérico) entre -1 até 1 (ambos inclusos). Veja: #include <iostream> #include <math.h> #include <cstdlib> using namespace std; int main(int argc, char *argv[]){ cout << "Seno de 0 = " << sin(0) << "\n"; cout << "Seno de 0 = " << sin(1) << "\n"; cout << "Seno de 0 = " << sin(2) << "\n\n"; system("PAUSE"); // pausa o programa return EXIT_SUCCESS; } Ao executar este código C++ nós teremos o seguinte resultado: Seno de 0 = 0 Seno de 0 = 0.841471 Seno de 0 = 0.909297 Note que calculamos os senos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função seno mostrada abaixo: ![]() |
C# ::: Namespace System.Drawing ::: Graphics |
Como desenhar texto usando o método DrawString() da classe Graphics do C#Quantidade de visualizações: 6046 vezes |
Em algumas situações precisamos desenhar uma string (texto) no formulário ou algum outro controle. Para isso podemos usar o método DrawString() da classe Graphics. A assinatura mais comumente usada deste método é:Graphics.DrawString(String, Font, Brush, Single, Single) private void button1_Click(object sender, EventArgs e){ // vamos obter o Graphics do formulário Graphics g = this.CreateGraphics(); // vamos desenhar a string "Arquivo de Códigos" g.DrawString("Arquivo de Códigos", this.Font, new SolidBrush(Color.Red), 40, 60); // vamos liberar o objeto Graphics g.Dispose(); } Aqui a string será desenhada usando a fonte do formulário e na cor vermelha e sólida. Se quiséssemos definir a fonte, o código ficaria algo assim: g.DrawString("Arquivo de Códigos", new Font("Verdana", 30), new SolidBrush(Color.Red), 40, 60); As coordenadas x e y nas quais o desenho ocorrerá podem ser informadas como um objeto da estrutura PointF. Veja: g.DrawString("Arquivo de Códigos", new Font("Verdana", 30), new SolidBrush(Color.Red), new PointF(80f, 120f)); |
C ::: Dicas & Truques ::: Matemática e Estatística |
Como calcular MDC em CQuantidade de visualizações: 23927 vezes |
Atualmente a definição de Máximo Divisor Comum (MDC) pode ser assim formalizada: Sejam a, b e c números inteiros não nulos, dizemos que c é um divisor comum de a e b se c divide a (escrevemos c|a) e c divide b (c|b). Chamaremos D(a,b) o conjunto de todos os divisores comum de a e b. O trecho de código abaixo mostra como calcular o MDC de dois números informados: #include <stdio.h> #include <stdlib.h> #include <locale.h> // função que recebe dois inteiros e retorna // o Máximo Divisor Comum dos dois int MDC(int a, int b){ int resto; while(b != 0){ resto = a % b; a = b; b = resto; } return a; } int main(int argc, char *argv[]){ int x, y; setlocale(LC_ALL,""); // para acentos do português printf("Este programa permite calcular o MDC\n"); printf("Informe o primeiro número: "); scanf("%d", &x); printf("Informe o segundo número: "); scanf("%d", &y); printf("O Máximo Divisor Comum de %d e %d é %d", x, y, MDC(x, y)); printf("\n\n"); system("pause"); return 0; } Ao executar este código C nós teremos o seguinte resultado: Este programa permite calcular o MDC Informe o primeiro número: 12 Informe o segundo número: 9 O Máximo Divisor Comum de 12 e 9 é 3 |
C++ ::: Fundamentos da Linguagem ::: Passos Iniciais |
Apostila C++ para iniciantes - Como usar a macro EXIT_SUCCESS em C++Quantidade de visualizações: 9622 vezes |
A macro EXIT_SUCCESS, disponível na biblioteca cstdlib da linguagem C++, pode ser usada como argumento para a função exit() para sinalizar que o programa finalizou sua execução sem erros. Os dois trechos de código abaixo são semelhantes: 1) Usando EXIT_SUCCESS para sinalizar que o programa foi finalizado com sucesso: #include <cstdlib> using namespace std; int main(int argc, char *argv[]) { // programa foi finalizado com sucesso return EXIT_SUCCESS; } 2) Usando o valor 0 para sinalizar que o programa foi finalizado com sucesso: #include <cstdlib> using namespace std; int main(int argc, char *argv[]) { // programa foi finalizado com sucesso return 0; } |
Nossas 20 dicas & truques de programação mais populares |
JavaScript - Como somar dias a uma data em JavaScript usando uma função personalizada adicionar_dias() que retorna um objeto Date |
Você também poderá gostar das dicas e truques de programação abaixo |
Java - Como adicionar ou subtrair dias de uma data e hora usando o método add() da classe Calendar do Java |
Nossas 20 dicas & truques de programação mais recentes |
Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site |
Python - Como criar o jogo Pedra, Papel, Tesoura em Python - Jogo completo em Python com código comentado |
Últimos Exercícios Resolvidos |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
1º lugar: Java |