Lista de Exercícios Resolvidos: Java | Python | VisuAlg | Portugol | C | C# | VB.NET | C++
Você está aqui: JavaScript ::: Dicas & Truques ::: Arrays e Matrix (Vetores e Matrizes)

Como adicionar um elemento ao final de um array

Quantidade de visualizações: 8266 vezes
<script language="javascript">
<!--
  var valores = new Array(1, 2, 3, 4, 5);
  document.write("Valores no Array: " + valores + "<br>");
  valores.push(6);
  document.write("Adicionei um novo elemento ao final do array<br>");
  document.write("Valores no Array: " + valores);
//-->
</script>


Link para compartilhar na Internet ou com seus amigos:

VisuAlg ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular o coeficiente angular de uma reta em VisuAlg dados dois pontos no plano cartesiano

Quantidade de visualizações: 378 vezes
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x.

Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano:



Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é:

\[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \]

Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente.

Veja agora o trecho de código na linguagem VisuAlg que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos:

algoritmo "Calcular o coeficiente angular de uma reta em VisuAlg"

var
  // coordenadas dos dois pontos
  x1, y1, x2, y2: real
  // guarda o coeficiente angular
  m: real

inicio
  // x e y do primeiro ponto
  escreva("Coordenada x do primeiro ponto: ")
  leia(x1)
  escreva("Coordenada y do primeiro ponto: ")
  leia(y1)

  // x e y do segundo ponto
  escreva("Coordenada x do segundo ponto: ")
  leia(x2)
  escreva("Coordenada y do segundo ponto: ")
  leia(y2)

  // vamos calcular o coeficiente angular
  m <- (y2 - y1) / (x2 - x1)

  // mostramos o resultado
  escreva("O coeficiente angular é: ", m)

fimalgoritmo 

Ao executar este código VisuAlg nós teremos o seguinte resultado:

Coordenada x do primeiro ponto: 3
Coordenada y do primeiro ponto: 6
Coordenada x do segundo ponto: 9
Coordenada y do segundo ponto: 10
O coeficiente angular é: 0.6666666666666666

Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$):

algoritmo "Calcular o coeficiente angular de uma reta em VisuAlg"

var
  // coordenadas dos dois pontos
  x1, y1, x2, y2: real
  // guarda os comprimentos dos catetos oposto e adjascente
  cateto_oposto, cateto_adjascente: real
  // guarda o ângulo tetha (em radianos) e a tangente
  tetha, tangente: real

inicio
  // x e y do primeiro ponto
  escreva("Coordenada x do primeiro ponto: ")
  leia(x1)
  escreva("Coordenada y do primeiro ponto: ")
  leia(y1)

  // x e y do segundo ponto
  escreva("Coordenada x do segundo ponto: ")
  leia(x2)
  escreva("Coordenada y do segundo ponto: ")
  leia(y2)

  // vamos obter o comprimento do cateto oposto
  cateto_oposto <- y2 - y1
  // e agora o cateto adjascente
  cateto_adjascente <- x2 - x1
  // vamos obter o ângulo tetha, ou seja, a inclinação da hipetunesa
  // (em radianos, não se esqueça)
  tetha <- ArcTan(cateto_oposto / cateto_adjascente)
  // e finalmente usamos a tangente desse ângulo para calcular
  // o coeficiente angular
  tangente <- Tan(tetha)

  // mostramos o resultado
  escreva("O coeficiente angular é: ", tangente)

fimalgoritmo 

Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta:

1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0;

2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0;

3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0).

4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe.


Java ::: Dicas & Truques ::: Threads

Threads em Java - O que são threads e como usá-las em seus programas Java

Quantidade de visualizações: 13180 vezes
Uma thread é um fluxo de execução de uma determinada tarefa em um programa. Na programação tradicional, temos apenas um fluxo de execução que começa a executar no início do programa e vai até o final. Com o uso de threads podemos ter várias tarefas sendo executadas ao mesmo tempo, cada uma independente da outra.

Em programas que contêm interfaces gráficas, o uso de múltiplos fluxos de execução (ou threads) é muito comum. Enquanto digitamos em uma caixa de texto, uma animação pode estar sendo executada ou um arquivo sendo baixado.

O Java permite que tenhamos várias threads sendo executadas ao mesmo tempo. Cada tarefa (ou thread) é uma instância da interface Runnable. Esta interface descreve apenas um método:

public void run();
Há duas formas de criarmos uma thread em Java. A primeira consiste em extender a classe Thread. Esta classe implementa a interface Runnable e fornece o método start(), que é usado para avisar ao gerenciador de threads que a thread recém criada está pronta para ser executada. Veja um exemplo:

// criamos uma classe que servirá como thread
class MinhaThread extends Thread{
  private String nome;  

  public MinhaThread(String nome){
    this.nome = nome;
  }   

  public void run(){
    for(int i = 1; i <= 20; i++){
      System.out.println(nome + ": " + i);
    }
  }
}

public class Estudos{
  public static void main(String[] args){
    // vamos criar duas threads
    MinhaThread t1 = new MinhaThread("Thread 1");
    t1.start(); // chamamos o método start() e não run()

    MinhaThread t2 = new MinhaThread("Thread 2");
    t2.start(); // chamamos o método start() e não run()    

    System.exit(0);
  }
}

Salve este código como Estudos.java, compile e execute. Veja que cada thread escreverá de 1 a 20 na tela. Observe como as duas threads se alternam em suas tarefas, ou seja, de tempos em tempos uma cede lugar para que a outra seja executada. Note também que, embora nossa classe tenha um método run() nós não o chamamos. O que fazemos é chamar o método start(), que torna a thread elegível para ser executada a qualquer momento.

Uma outra forma de criarmos uma thread é fazer com que nossa classe implemente a interface Runnable. Veja:

// criamos uma classe que servirá como thread
class MinhaThread implements Runnable{
  private String nome;  

  public MinhaThread(String nome){
    this.nome = nome;
  }   

  public void run(){
    for(int i = 1; i <= 20; i++){
      System.out.println(nome + ": " + i);
    }
  }
}

public class Estudos{
  public static void main(String[] args){
    // vamos criar duas threads
    MinhaThread mt1 = new MinhaThread("Thread 1");
    Thread t1 = new Thread(mt1);
    t1.start();    

    MinhaThread mt2 = new MinhaThread("Thread 2");
    Thread t2 = new Thread(mt2);
    t2.start();

    System.exit(0);
  }
}

O funcionamento do código é o mesmo. A diferença é que agora, a classe usada como thread implementa a interface Runnable. A forma de criação da thread também foi alterada. Agora nós criamos instâncias de Thread fornecendo nossa classe thread como argumento e chamamos o método start da classe Thread e não de nossa própria classe, como fizemos anteriormente.


Java ::: Estruturas de Dados ::: Pilhas

Como criar uma pilha em Java usando um vetor (array) - Estruturas de Dados em Java

Quantidade de visualizações: 1918 vezes
A Pilha é uma estrutura de dados do tipo LIFO - Last-In, First-Out (Último a entrar, primeiro a sair). Neste tipo de estrutura, o último elemento a ser inserido é o primeiro a ser removido. Veja a imagem a seguir:



Embora seja mais comum a criação de uma estrutura de dados do tipo Pilha de forma dinâmica (usando ponteiros e referências), nesta dica eu mostrarei como podemos criá-la em Java usando um array, ou seja, um vetor. No exemplo eu usei inteiros, mas você pode modificar para o tipo de dados que você achar mais adequado.

Veja o código completo para uma classe Pilha usando um vetor de ints. Veja que o tamanho do vetor é informado no construtor da classe. Note também a lógica empregada na construção dos métodos empilhar(), desempilhar() e imprimirPilha():

Código para Pilha.java:

package estudos;

public class Pilha {
  private int elementos[]; // elementos na pilha
  private int topo; // o elemento no topo da pilha
  private int maximo; // a quantidade máxima de elementos na pilha

  // construtor da classe Pilha
  public Pilha(int tamanho) {
    // constrói o vetor
    this.elementos = new int[tamanho];
    // define o topo como -1
    this.topo = -1;
    // ajusta o tamanho da pilha para o valor recebido
    this.maximo = tamanho;
  }

  // método usado para empilhar um novo elemento na pilha
  public void empilhar(int item) {
    // a pilha já está cheia?
    if (this.topo == (this.maximo - 1)) {
      System.out.println("\nA pilha está cheia\n");
    } 
    else {
      // vamos inserir este elemento no topo da pilha
      this.elementos[++this.topo] = item;
    }
  }

  // méodo usado para desempilhar um elemento da pilha
  public int desempilhar() {
    // a pilha está vazia
    if (this.topo == -1) {
      System.out.println("\nA pilha está vazia\n");
      return -1;
    } 
    else {
      System.out.println("Elemento desempilhado: " + elementos[topo]);
      return this.elementos[this.topo--];
    }
  }

  // método que permite imprimir o conteúdo da pilha
  public void imprimirPilha() {
    // pilha vazia
    if (this.topo == -1) {
      System.out.println("\nA pilha está vazia\n");
    } 
    else {
      // vamos percorrer todos os elementos da pilha
      for (int i = 0; i <= this.topo; i++) {
        System.out.println("Item[" + (i + 1) + "]: " + this.elementos[i]);
      }
    }
  }
}

Veja agora o código para a classe principal, ou seja, a classe Main usada para testar a funcionalidade da nossa pilha:

Código para Principal.java:

package estudos;

public class Estudos{
  public static void main(String[] args){
    // vamos criar uma nova pilha com capacidade para 5 elementos
    Pilha p = new Pilha(5);

    // vamos empilhar 3 elementos
    p.empilhar(34);
    p.empilhar(52);
    p.empilhar(18);

    // vamos mostrar os elementos na pilha
    System.out.println("Itens presentes na Pilha\n");
    p.imprimirPilha();

    // agora vamos remover e retornar dois elementos da pilha
    System.out.println();
    p.desempilhar();
    p.desempilhar();

    // vamos mostrar os elementos na pilha novamente
    System.out.println("\nItens presentes na Pilha\n");
    p.imprimirPilha();
  }
}

Ao executar este código Java nós teremos o seguinte resultado:

Itens presentes na Pilha

Item[1]: 34
Item[2]: 52
Item[3]: 18

Elemento desempilhado: 18
Elemento desempilhado: 52

Itens presentes na Pilha

Item[1]: 34


PHP ::: Dicas & Truques ::: Data e Hora

Datas e horas em PHP - Como obter o timestamp do primeiro dia do mês e ano informados

Quantidade de visualizações: 9732 vezes
Nesta dica eu mostrarei como é possível obter o timestamp do primeiro dia de um determinado mês e ano.

O "Unix timestamp" contém o número de segundos entre a "Unix Epoch" (1 de janeiro de 1970, às 00:00:00 GMT) e o tempo decorrido desde então.

Veja o código PHP completo para o exemplo:

<html>
<head>
<title>Estudando PHP</title>
</head>
<body>
 
<?php
  $mes = 1; // 1 = janeiro;
  $ano = 2021;
  $primeiro_dia = mktime(0, 0, 0, $mes, 1, $ano);
  echo "O timestamp do primeiro dia do mês e ano 
    informado é: " . $primeiro_dia;
?>
 
</body>
</html>

Ao executar este código nós teremos o seguinte resultado

O timestamp do primeiro dia do mês e ano informado é: 1609455600


GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como converter graus em radianos usando a função deg2rad() do GNU Octave - GNU Octave para Geometria Analítica e Álgebra Linear

Quantidade de visualizações: 1275 vezes
Quer aprender como calcular radianos ou como converter graus em radianos? Veja a fórmula nessa dica.

Quando estamos trabalhando com trigonometria no software GNU Octave, é importante ficarmos atentos ao fato de que todos os métodos e funções trigonométricas nessa linguagem recebem seus argumentos em radianos, em vez de graus.

Nesta dica veremos como converter graus em radianos (sem a chatice de ficar relembrando regra de três). Veja a fórmula abaixo:

\[Radianos = Graus \times \frac{\pi}{180}\]

Agora veja como esta fórmula pode ser escrita no GNU Octave. Primeiro vamos usar a fórmula dada e depois veremos a função deg2rad(). Assim, digite a expressão a seguir na janela de comandos do GNU Octave:

>> 30 * (pi / 180) [Enter]
ans = 0.5236
>>

Agora veja como podemos obter o mesmo resultado usando a função deg2rad():

>> deg2rad(30) [Enter]
ans = 0.5236
>>

Finalmente, veja como usar esta função em um script do GNU Octave:

graus = input("Informe o ângulo em graus: ");
radianos = deg2rad(graus);
fprintf("O ângulo em radianos é %f\n", radianos);

Execute este script e teremos o seguinte resultado na janela de comandos:

Informe o ângulo em graus: 30 [Enter]
O ângulo em radianos é 0.523599
>>


Veja mais Dicas e truques de GNU Octave

Dicas e truques de outras linguagens

Códigos Fonte

Programa de Gestão Financeira Controle de Contas a Pagar e a Receber com Cadastro de Clientes e FornecedoresSoftware de Gestão Financeira com código fonte em PHP, MySQL, Bootstrap, jQuery - Inclui cadastro de clientes, fornecedores e ticket de atendimento
Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais
Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesControle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades
Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: Delphi
6º lugar: C
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby

Anúncio Patrocinado
Chat de Sexo - Site para adultso - Maiores de 18 anos. Converse com pessoas de todo o Brasil, de forma discreta e anônima


© 2024 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 9 usuários muito felizes estudando em nosso site.