Você está aqui: Python ::: Desafios e Lista de Exercícios Resolvidos ::: Python Básico

Como calcular o peso de uma pessoa na Lua usando Python - Exercícios Resolvidos de Python

Quantidade de visualizações: 596 vezes
Pergunta/Tarefa:

Escreva um programa Python que leia o peso de uma pessoa na Terra e retorne o seu peso na Lua. Lembre-se da seguinte fórmula:

\[\text{Peso na Lua} = \frac{\text{Peso na Terra}}{9,81} \times 1,622 \]

Aqui nós estamos definindo a força da gravidade na Terra como 9,81 m/s2 e a força da gravidade na Lua como 1,622 m/s2. Se você quiser calcular o peso de uma pessoa em Marte, por exemplo, basta trocar a força da gravidade na Lua pela força da gravidade em Marte.

Sua saída deverá ser parecida com:

Peso na terra (kg): 70
O peso da pessoa na Lua é: 11.57 kg
Resposta/Solução:

Veja a resolução comentada deste exercício usando Python:

Este trecho de código ou resolução de exercício faz parte do Super Pack 12.000 Dicas e Truques de Programação e 1.500 Exercícios Resolvidos em Java, Python, VisuAlg, Portugol, Delphi, C#, C, C++, VB.NET, Golang, Pascal, Ruby, PHP, e várias outras linguagens.

Aprenda a programar resolvendo problemas do mundo real. Tudo em português, com comentários em português.

Quero Ser Apoiador(a)


Link para compartilhar na Internet ou com seus amigos:

Python ::: Desafios e Lista de Exercícios Resolvidos ::: Arrays e Matrix (Vetores e Matrizes)

Exercícios Resolvidos de Python - Criando dois vetores de inteiros de forma que a soma dos elementos individuais de cada vetor seja igual a 30

Quantidade de visualizações: 722 vezes
Pergunta/Tarefa:

Considere os seguintes vetores:

# dois vetores de 5 inteiros cada
a = [50, -2, 9, 5, 17]
b = [0 for x in range(5)]
Escreva um programa Python que preencha o segundo vetor de forma que a soma dos respectivos elementos individuais de cada vetor seja igual a 30.

Sua saída deverá ser parecida com:

Valores no vetor a: 50   -2   9   5   17   
Valores no vetor b: -20   32   21   25   13
Resposta/Solução:

Veja a resolução comentada deste exercício usando Python:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# método principal
def main():
  # dois vetores de 5 inteiros cada
  a = [50, -2, 9, 5, 17]
  b = [0 for x in range(5)]
    
  # vamos preencher o segundo vetor de forma que a soma dos
  # valores de seus elementos seja 30
  for i in range(len(a)):
    b[i] = 30 - a[i]
    
  # vamos mostrar o resultado
  print("Valores no vetor a: ", end="")
  for i in range(len(a)):
    print("{0}  ".format(a[i]), end="") 
    
  print("\nValores no vetor b: ", end="")
  for i in range(len(b)):
    print("{0}  ".format(b[i]), end="") 
  
if __name__== "__main__":
  main()



Python ::: Python para Engenharia ::: Geometria Analítica e Álgebra Linear

Como converter Coordenadas Cartesianas para Coordenadas Polares usando Python

Quantidade de visualizações: 5442 vezes
Nesta nossa série de Python para Geometria Analítica e Álgebra Linear, mostrarei um código 100% funcional para fazer a conversão entre coordenadas cartesianas e coordenadas polares. Esta operação é muito frequente em computação gráfica e é parte integrante das disciplinas dos cursos de Engenharia (com maior ênfase na Engenharia Civil).

Na matemática, principalmente em Geometria e Trigonometria, o sistema de Coordenadas no Plano Cartesiano, ou Espaço Cartesiano, é um sistema que define cada ponto em um plano associando-o, unicamente, a um conjuntos de pontos numéricos.

Dessa forma, no plano cartesiano, um ponto é representado pelas coordenadas (x, y), com o x indicando o eixo horizontal (eixo das abscissas) e o y indicando o eixo vertical (eixo das ordenadas). Quando saímos do plano (espaço 2D ou R2) para o espaço (espaço 3D ou R3), temos a inclusão do eixo z (que indica profundidade).

Já o sistema de Coordenadas Polares é um sistema de coordenadas em duas dimensões no qual cada ponto no plano é determinado por sua distância a partir de um ponto de referência conhecido como raio (r) e um ângulo a partir de uma direção de referência. Este ângulo é normalmente chamado de theta (__$\theta__$). Assim, um ponto em Coordenadas Polares é conhecido por sua posição (r, __$\theta__$).

Antes de prosseguirmos, veja uma imagem demonstrando os dois sistemas de coordenadas:



A fórmula para conversão de Coordenadas Cartesianas para Coordenadas Polares é:

__$r = \sqrt{x^2+y2}__$
__$\theta = \\arctan\left(\frac{y}{x}\right)__$

E aqui está o código Python completo que recebe as coordenadas cartesianas (x, y) e retorna as coordenadas polares (r, __$\theta__$):

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importamos a bibliteca NumPy
import numpy as np
import math as math
  
def main():
  # vamos ler as coordenadas cartesianas
  x = float(input("Valor de x: "))
  y = float(input("Valor de y: "))

  # vamos calcular o raio
  raio = math.sqrt(math.pow(x, 2) + math.pow(y, 2))  

  # agora calculamos o theta (ângulo) em radianos 
  theta = np.arctan2(y, x)

  # queremos o ângulo em graus também
  angulo_graus = 180 * (theta / math.pi) 

  # e exibimos o resultado
  print("As Coordenadas Polares são:")
  print("raio = %0.4f, theta = %0.4f, ângulo em graus = %0.2f" 
    % (raio, theta, angulo_graus))

if __name__== "__main__":
  main()

Ao executar este código nós teremos o seguinte resultado:

Valor de x: -1
Valor de y: 1
As Coordenadas Polares são:
raio = 1.4142, theta = 2.3562, ângulo em graus = 135.00

Veja que as coordenadas polares equivalentes são (__$\sqrt{2}__$, __$\frac{3\pi}{4}__$), com o theta em radianos. Sim, os professores das disciplinas de Geometria Analítica e Álgebra Linear, Física e outras gostam de escrever os resultados usando raízes e frações em vez de valores reais.


Python ::: PyQt GUI Toolkit ::: QPushButton

Como criar um botão em Python PyQt usando a classe QPushButton

Quantidade de visualizações: 1084 vezes
Os botões QPushButton são os controles mais básicos e comuns em aplicações GUI PyQt. Eles são criados a partir da classe QPushButton. Veja a sua posição na hierarquia de classes dos PyQt:

QObject, QPaintDevice
  QWidget
    QAbstractButton
      QPushButton
        QCommandLinkButton


Veja um trecho de código no qual criamos um botão QPushButton e o colocamos em uma janela QWidget:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# vamos importar os módulos necessários
import sys
from PyQt6.QtCore import *
from PyQt6.QtGui import *
from PyQt6.QtWidgets import *

# método que mostrará a janela principal
def mostrar_janela_principal():
  # cria uma instância da classe QApplication
  app = QApplication(sys.argv)
  
  # criamos a janela principal
  janela = QWidget()
  
  # definimos o título da janela
  janela.setWindowTitle("Cadastro de Clientes")
  
  # definimos as coordenadas e as dimensões da janela
  janela.setGeometry(100, 100, 500, 300)

  # vamos criar um botão QPushButton
  botao = QPushButton("Cadastrar", janela)
  
  # definimos a localização do botão 
  botao.move(10, 10)

  # tornamos a janela visível 
  janela.show()

  # e executamos a aplicação
  sys.exit(app.exec())

if __name__== "__main__":
  mostrar_janela_principal()

Ao executar este código Python PyQt nós teremos o seguinte resultado:




Desafios, Exercícios e Algoritmos Resolvidos de Python

Veja mais Dicas e truques de Python

Dicas e truques de outras linguagens

Códigos Fonte

Programa de Gestão Financeira Controle de Contas a Pagar e a Receber com Cadastro de Clientes e FornecedoresSoftware de Gestão Financeira com código fonte em PHP, MySQL, Bootstrap, jQuery - Inclui cadastro de clientes, fornecedores e ticket de atendimento
Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais
Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesControle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades
Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: Delphi
6º lugar: C
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2024 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 14 usuários muito felizes estudando em nosso site.