Você está aqui: Python ::: Python para Engenharia ::: Geometria Analítica e Álgebra Linear |
Como calcular a transposta de uma matriz em Python - Python para Geometria Analítica e Álgebra LinearQuantidade de visualizações: 6586 vezes |
A matriz transposta de uma matriz A é a matriz AT. Tal matriz é obtida quando copiamos os elementos da matriz A para uma outra matriz (ou para ela mesma) e trocamos de posição as linhas e colunas. Dessa forma, a primeira linha da matriz A se transforma na primeira coluna da matriz transposta, a segunda linha da matriz A se transforma na segunda coluna da matriz transposta e assim por diante. Em termos de notação, podemos dizer, de forma algébrica, que: ATji = Aij Onde i representa as linhas e j representa as colunas, tanto na matriz original quanto na matriz transposta. É importante estar atento à quantidade de linhas e colunas na matriz original e na matriz transposta equivalente. Assim, se a matriz original for 3x2, a matriz transposta será 2x3. Antes de vermos o código Python, dê uma olhada na seguinte matriz de duas linhas e três colunas: \[A = \left[\begin{matrix} 3 & 5 & 7 \\ 1 & 2 & 9 \end{matrix}\right] \] Sua matriz transposta correspondente é: \[A^T = \left[\begin{matrix} 3 & 1 \\ 5 & 2 \\ 7 & 9 \end{matrix}\right] \] E agora veja o código Python que declara uma matriz 2x3 e gera a matriz transposta 3x2: # importamos a bibliteca NumPy import numpy as np def main(): # vamos declarar e construir uma matrix # 2x3 (duas linhas e três colunas matriz = np.array([(3, 5, 7), (1, 2, 9)]) # vamos exibir os valores da matriz print("Elementos da matriz:") for i in range(np.shape(matriz)[0]): for j in range(np.shape(matriz)[1]): print("%7.2f" % matriz[i][j], end="") print() # como temos uma matriz 2x3, a transposta deverá ser # 3x2, ou seja, três linhas e duas colunas linhas = np.shape(matriz)[0] # linhas da matriz original colunas = np.shape(matriz)[1] # colunas da matriz original transposta = np.empty((colunas, linhas)) # e agora vamos preencher a matriz transposta for i in range(np.shape(matriz)[0]): for j in range(np.shape(matriz)[1]): transposta[j][i] = matriz[i][j] # vamos exibir os valores da matriz transposta print("\nElementos da matriz transposta:") for i in range(np.shape(transposta)[0]): for j in range(np.shape(transposta)[1]): print("%7.2f" % transposta[i][j], end="") print() if __name__== "__main__": main() Ao executar este código Python nós teremos o seguinte resultado: Elementos da matriz: 3 5 7 1 2 9 Elementos da matriz transposta: 3 1 5 2 7 9 É possível também obter a matriz transposta de um outra matriz usando o método transpose() da biblioteca NumPy da linguagem Python. Veja: # importamos a bibliteca NumPy import numpy as np def main(): # vamos declarar e construir uma matrix # 2x3 (duas linhas e três colunas matriz = np.array([(3, 5, 7), (1, 2, 9)]) # vamos exibir os valores da matriz print("Elementos da matriz:") for i in range(np.shape(matriz)[0]): for j in range(np.shape(matriz)[1]): print("%7.2f" % matriz[i][j], end="") print() # vamos transpor a matriz usando o método transpose() transposta = matriz.transpose() # vamos exibir os valores da matriz transposta print("\nElementos da matriz transposta:") for i in range(np.shape(transposta)[0]): for j in range(np.shape(transposta)[1]): print("%7.2f" % transposta[i][j], end="") print() if __name__== "__main__": main() Ao executar este novo código Python veremos que o resultado é o mesmo. |
![]() |
Desafios, Exercícios e Algoritmos Resolvidos de Python |
Veja mais Dicas e truques de Python |
Dicas e truques de outras linguagens |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
1º lugar: Java |