Ofereço ajuda em Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD
+55 (062) 98553-6711
Ofereço ajuda em PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO
+55 (062) 98243-1195

Você está aqui: Python ::: Python para Engenharia ::: Geometria Analítica e Álgebra Linear

Como calcular a transposta de uma matriz em Python - Python para Geometria Analítica e Álgebra Linear

Quantidade de visualizações: 6586 vezes
A matriz transposta de uma matriz A é a matriz AT. Tal matriz é obtida quando copiamos os elementos da matriz A para uma outra matriz (ou para ela mesma) e trocamos de posição as linhas e colunas. Dessa forma, a primeira linha da matriz A se transforma na primeira coluna da matriz transposta, a segunda linha da matriz A se transforma na segunda coluna da matriz transposta e assim por diante.

Em termos de notação, podemos dizer, de forma algébrica, que:

ATji = Aij

Onde i representa as linhas e j representa as colunas, tanto na matriz original quanto na matriz transposta.

É importante estar atento à quantidade de linhas e colunas na matriz original e na matriz transposta equivalente. Assim, se a matriz original for 3x2, a matriz transposta será 2x3.

Antes de vermos o código Python, dê uma olhada na seguinte matriz de duas linhas e três colunas:

\[A = \left[\begin{matrix} 3 & 5 & 7 \\ 1 & 2 & 9 \end{matrix}\right] \]

Sua matriz transposta correspondente é:

\[A^T = \left[\begin{matrix} 3 & 1 \\ 5 & 2 \\ 7 & 9 \end{matrix}\right] \]

E agora veja o código Python que declara uma matriz 2x3 e gera a matriz transposta 3x2:

# importamos a bibliteca NumPy
import numpy as np
   
def main():
  # vamos declarar e construir uma matrix
  # 2x3 (duas linhas e três colunas
  matriz = np.array([(3, 5, 7), (1, 2, 9)])
    
  # vamos exibir os valores da matriz
  print("Elementos da matriz:")
  for i in range(np.shape(matriz)[0]):
    for j in range(np.shape(matriz)[1]):
      print("%7.2f" % matriz[i][j], end="")
    
    print()

  # como temos uma matriz 2x3, a transposta deverá ser
  # 3x2, ou seja, três linhas e duas colunas
  linhas = np.shape(matriz)[0] # linhas da matriz original
  colunas = np.shape(matriz)[1] # colunas da matriz original
  transposta = np.empty((colunas, linhas)) 
    
  # e agora vamos preencher a matriz transposta
  for i in range(np.shape(matriz)[0]):
    for j in range(np.shape(matriz)[1]):
      transposta[j][i] = matriz[i][j]
    
  # vamos exibir os valores da matriz transposta
  print("\nElementos da matriz transposta:")
  for i in range(np.shape(transposta)[0]):
    for j in range(np.shape(transposta)[1]):
      print("%7.2f" % transposta[i][j], end="")
    
    print()  

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Elementos da matriz:
    3      5      7  
    1      2      9  
Elementos da matriz transposta:
    3      1  
    5      2  
    7      9  


É possível também obter a matriz transposta de um outra matriz usando o método transpose() da biblioteca NumPy da linguagem Python. Veja:

# importamos a bibliteca NumPy
import numpy as np
   
def main():
  # vamos declarar e construir uma matrix
  # 2x3 (duas linhas e três colunas
  matriz = np.array([(3, 5, 7), (1, 2, 9)])
    
  # vamos exibir os valores da matriz
  print("Elementos da matriz:")
  for i in range(np.shape(matriz)[0]):
    for j in range(np.shape(matriz)[1]):
      print("%7.2f" % matriz[i][j], end="")
    
    print()

  # vamos transpor a matriz usando o método transpose()
  transposta = matriz.transpose() 
    
  # vamos exibir os valores da matriz transposta
  print("\nElementos da matriz transposta:")
  for i in range(np.shape(transposta)[0]):
    for j in range(np.shape(transposta)[1]):
      print("%7.2f" % transposta[i][j], end="")
    
    print()  

if __name__== "__main__":
  main()

Ao executar este novo código Python veremos que o resultado é o mesmo.

Link para compartilhar na Internet ou com seus amigos:

Desafios, Exercícios e Algoritmos Resolvidos de Python

Veja mais Dicas e truques de Python

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 65 usuários muito felizes estudando em nosso site.