Você está aqui: GNU Octave ::: GNU Octave para Engenharia ::: Geometria Analítica e Álgebra Linear |
GNU Octave para Álgebra Linear - Como calcular o determinante de uma matriz usando a função det() do GNU OctaveQuantidade de visualizações: 2496 vezes |
Na Matemática e na Álgebra Linear, o determinante é uma função matricial que associa a cada matriz quadrada um escalar, ou seja, o determinante é uma função que transforma uma matriz quadrada em um número real. O determinante, ou melhor, a função determinante, permite saber se a matriz tem ou não inversa (matriz inversa), pois, as matriz que não tem inversa, são precisamente aquelas cujo determinante é igual a 0. Se o determinante for diferente de zero, então a matriz é uma matriz invertível. O determinante de uma matriz A é denotado por det(A), det A ou |A|. O software GNU Octave nos fornece uma forma rápida para obtermos o determinante de uma matriz: a função det(). Veja o exemplo a seguir (digitando diretamente na Janela de Comandos): >> A = [1, 2, 3; 2, 5, 2; 1, 3, 1] [ENTER] A = 1 2 3 2 5 2 1 3 1 >> det(A) [ENTER] ans = 2 >> Veja que declaramos uma matriz 3x3 com o nome A e em seguida usamos a função det() para obter o seu determinante. Vamos ver agora como podemos fazer esse mesmo cálculo em um script do GNU Octave: # declara uma matriz quadrada de ordem 3 A = [1, 2, 3; 2, 5, 2; 1, 3, 1] # calculamos o determinante determinante = det(A) # mostramos os resultado fprintf("O determinante da matriz A é %f\n", determinante); Não se esqueça de pesquisar sobre as propriedades do determinante. São cerca de 10 propriedades que nos ajudam a calcular o determinante da matriz simplesmente olhando para a sua composição. |
![]() |
Veja mais Dicas e truques de GNU Octave |
Dicas e truques de outras linguagens |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
1º lugar: Java |